
qedb: Expressive and Modular Verifiable Databases
(without SNARKs)

Vincenzo Botta1,4, Simone Bottoni2, Matteo Campanelli3, Emanuele Ragnoli4,5, and Alberto
Trombetta2,4

1 Sapienza University of Rome
2 University of Insubria

3 Offchain Labs
4 Provably Technologies
5 University of Warsaw

Abstract. Verifiable Databases (VDBs) let clients delegate storage to an untrusted provider
while maintaining the ability to verify query results. Since databases are foundational and
storage delegation is increasingly common, VDBs address a critical need. Existing VDB
designs face severañ limitations: approaches based on general-purpose proof systems (e.g.,
SNARKs) offer high expressivity but at the cost of cumbersome intermediate representa-
tions, heuristic assumptions, and heavy cryptographic machinery, whereas schemes built
from specialized authenticated data structures (ADS), such as accumulators, are simpler
and rely on well-founded assumptions, yet they support only restricted queries and often
incur unacceptable overheads (e.g., a quadratic overhead in the number of the database
columns).
We present qedb, a new construction that advamces the state of the art on verifiable
databases from ADS:it is the most expressive scheme to date and the first with proof
length completely independent of the database size; it has no quadratic dependence on the
number of columns. qedb is deployment-oriented: it is performant and simple to implement
and analyze; it relies on well-founded assumptions; it can be easily made post-quantum
secure (using lattice-based instantiations).
One of our primary contribution is a modular, foundational framework separating the
information-theoretic logic of a VDB from its cryptographic instantiations. We show how
to realize it using pairing-based set accumulators and linear-map vector commitments
(which we introduces as a technique), and more generally show that extractable homo-
morphic polynomial commitments suffice.
Our Rust implementation of qedb scales to DBs with millions of rows. Its proving and
verification times are competitive against SNARK-based constructions and improve on
ADS-based solutions.

Table of Contents

qedb: Expressive and Modular Verifiable Databases (without SNARKs) 1
Vincenzo Botta, Simone Bottoni, Matteo Campanelli, Emanuele Ragnoli, and
Alberto Trombetta

1 Introduction . 3
1.1 The current landscape of VDB designs and their limitations 3
1.2 Our results . 4
1.3 Motivating applications . 6
1.4 Outline . 7

2 Technical Overview . 7
3 Related and Future Work . 11
4 Discussion: On Methodologies to Build VDBs . 13
5 Implementation and Experimental Evaluation . 14

5.1 Implementation and experimental setup . 14
5.2 Experimental Results . 15

6 Background: Authenticated Data Structures . 15
6.1 Notation and cryptographic assumptions . 15
6.2 Functional commitments with unique setup . 16
6.3 Linear-map vector commitments . 17
6.4 Subvector-opening vector commitments . 18
6.5 Set accumulators . 18
6.6 Polynomial commitments . 19
6.7 Building blocks (Instantiations) . 20

7 Background: Cryptographic Verifiable Databases . 23
8 A New Information-Theoretic Model for Idealized VDB . 24

8.1 The idealized model . 24
8.2 The full formalization of idealized protocols . 26
8.3 From core to derived operations in idealized VDBs . 27

9 Our Compilation Results . 30
9.1 Accumulators and LVC with Zero-Testing: Definition . 30
9.2 Instantiating the zero-testing property with polynomial commitments 30
9.3 An instantiation of zero-testing directly from pairings . 31
9.4 The actual compiler . 31
9.5 Instantiating our compiler . 34

10 Our Final Construction: qedb . 35
A Concrete Efficiency Comparison to IntegriDB and vSQL . 45

1 Introduction

Databases are one of the foundations of modern technological infrastructure. They underpin fi-
nancial systems, enable researchers to analyze scientific data, support social platforms in storing
user activity, and allow governments to manage critical citizen records. Given their central role,
guaranteeing their integrity features is fundamental. However, organizations increasingly out-
source database management to third parties, entrusting them not only with the task of storing
data but also with that of executing queries and providing operational support. This trend gives
rise to a fundamental security challenge: how can an organization verify that outsourced queries
are executed correctly without having to recompute them locally?

Verifiable Databases (VDBs) [69] address this challenge by enabling clients to verify both
data integrity and query correctness without trusting the database provider. A client can hold
a short cryptographic digests encoding the dataset. Whenever it receives a query and a claimed
response, it will also receive a proof certifying its correctness. The client can then use this proof
and the digest to trust the response without having to access the entire database.

Ideal features of verifiable databases. For VDBs to be practical and widely applicable, they
should ideally satisfy some efficiency properties, as well as some security-related ones. We now
zoom in on some of the features that will be the focus of this work, at the same time motivating
them.

First, verification in a VDB should be efficient, i.e., consuming significantly fewer resources
than re-executing queries. For wider applicability, it should also be public (not limited to prede-
fined verifiers or requiring secret keys). Finally, it is desirable that they are non-interactive: after
sending a string certifying the result of a query (a proof), the prover is not required to be online
for verification. Lack of interaction reduces latency, simplifies composition with other protocols,
and in some applications is essentially required (e.g., smart contracts, where interaction would
both more expensive and substantially impact latency).

Any deployed VDB, naturally, should be expected to be secure. For this, solid cryptographic
assumptions are essential. Yet, they alone are not a guarantee of real-world security. An addi-
tional desirable feature of a trustworthy VDB construction, we argue, is that it should be as
simple as possible. In software, simpler designs tend to be less vulnerability-prone, easier to
audit, and more maintainable [29, 74]. Yet, many efficient VDB constructions—both in prior
literature and industrial efforts—come with considerable complexity, which can undermine these
very goals. (We expand in Section 1.1, Section 3 and Section 4)

This work in a nutshell. In this work we show it is possible to design highly efficient and
expressive VBDs (supporting a large subset of SQL) from simple building blocks. To this end,
we introduce a new construction, qedb, which addresses several limitations of prior approaches.
Along the way, we develop novel techniques and establish a solid theoretical foundation for the
design of VDBs.

1.1 The current landscape of VDB designs and their limitations

Before presenting our results, we give a brief overview of the existing designs in the VDB liter-
ature (which we expand in Section 3). They all fall into two categories6. The first is based on
general-purpose proof systems and, in particular, SNARKs [6]. Informally, a SNARK—succinct
non-interactive arguments of knowledge—is a proof system that computes a certificate π that
guarantees the result of a computation f(x). One of their most important features is that while
the computation can be very long, the certificate π can be very short. What makes general-
purpose approaches attractive is their natural support for expressive queries. However, this
often requires representing the database logic in the form of cumbersome intermediate repre-

6 In this work, and in these paragraphs, we focus on succinct VDBs where both the client’s running
time and the proof size are sublinear in the size of the database (ideally independent of it). In this
paper we are not interested in hiding properties and we leave zero-knowledge as an interesting future
work.

3

sentations (such as constraint systems7). This approach adds unnecessary complexity, increases
the likelihood of bugs, and results in a less accessible developer experience [73] (see also addi-
tional limitations in Section 4). Moreover, in order to achieve practical efficiency on the prover
side, these solutions often need to rely on recursion [4, 55] (where, informally, a SNARK proves
the valid verification of another SNARK proof). This has implications for the security of the
system, which must now rely on heuristic assumptions8. Indeed, the cryptographic community
has been suspicious of these heuristics for a while, and recent works exposed concrete ways to
attack them [53]. Finally, general-purpose tools may be a “sledgehammer” approach to what is
arguably a very structured application setting.

The second category of prior works on VDBs employs instead specialized Authenticated Data
Structures [58, 61, 71, 78, 86] (which we will often refer to simply as ADS). For an intuition the
reader can think of these as a more limited type of proof systems (e.g., specializing in proving
exclusively set membership, or interval queries, or inner product, etc.). On the plus side, these ap-
proaches tend to have simpler designs, which makes them easy to implement, analyze and audit.
They also substantially mitigate some of the common drawbacks of general-purpose approaches,
by relying on more well-founded security assumptions and not requiring an explicit intermediate
representation through constraint systems. These features make ADS-based schemes excellent
candidates for solutions with strong security guarantees and that are easy to deploy. Unfor-
tunately, though, the overall efficiency profile of the current state of the art (IntegriDB [85])
substantially limits their applicability. In general, its proving time is worse than other SNARK-
based solutions such as vSQL [84](albeit of the same order of magnitude). While IntegriDB does
compensate for this with better verification time and proof size on some specific queries, in order
to support JOINs, it introduces a specific runtime and storage overhead that is a dealbreaker in
many real-world settings; in particular, its preprocessing depends quadratically on the number
of columns in the DB tables9. Finally IntegriDB—and all prior ADS-based solutions—features
a proof size that depends on the database size (which could potentially be huge).

Current ADS-based design also suffer from an additional limitation, one that is more con-
ceptual in nature: since there is no clear unifying theory common to all these protocols, it is not
obvious for researchers how to extend or improve them (e.g., by updating some of their building
blocks). In particular, all existing blueprints provide little to no modularity (a feature that the
cryptographic proof community has recognized as essential [50]). Rather, they are offered as
a “package deal” [50] which couples the ideas behind the constructions and the cryptographic
building blocks in it. The result is a protocol of the form “employ ADS X here and employ ADS
Y there; combine them in such a way here”. This makes it unclear to see the implications of
changing a building block for another. In such cases, the security and expressivity of the final
scheme may need to be proved almost from scratch.

1.2 Our results

We propose new frameworks and designs based on ADS that improve on the state of the art of
VDBs, addressing all of the limitations above. Our results include:

• New techniques for verifiable databases based on authenticated data structures. We show
how to combine vector commitments with inner product features and accumulators to repre-
sent queries in a modular way and to efficiently prove their correctness over large databases.
Our new techniques play a crucial role in obtaining the efficiency features of our final con-
struction (see next item). Specifically, it is crucial to remove the quadratic dependency on

7 A constraint system is a way to encode a computation, usually for the purpose of proving it through
a cryptographic argument. For simplicity the reader can think of a circuit representation whenever
we use the phrase constraint system.

8 The heuristic assumptions related to recursion often stem from two (independent) aspects: treating
the random oracle as part of the circuit; applying recursion for depths for which we have no formal
guarantee of security. See also [16,53].

9 It is not uncommon to have 10–15 columns in some tables in practice (which yields an overhead
of ≈ 100–225×). Another point of reference is the standard benchmarks for database performance,
TPC-H, which includes tables containing 62 columns [32].)

4

Table 1: Comparison of expressive and succinct verifiable databases constructions. We compare qualita-
tive features in the top tables and efficiency metrics in the bottom table. We compare to general-purpose
SNARKs in Section 3, in Section 4 and in Appendix A.

Scheme Setup Core Building Blocks Decouples Logic &
Instantiations?

Expressivity

IntegriDB [85] powers of τ Merkle trees,
pairing-based
accumulators

✗ Fig. 1 (top part only)

This work powers of τ KZG ✓ Fig. 1 (all)

Scheme Overhead in |π|, Vtime

(queries w/o JOINs)
Overhead in |π|, Vtime

(JOINs)
Preprocessing &
server storage

IntegriDB [85] log(|column|) |resp| · log |column| |db|+ n2
cols

This work |qry| |resp| |db|
(NB: commonly |resp| ≪ |column| ≪ |db|; for aggregate queries, |qry| ≈ |resp|, else |qry| ≪ |resp|).

Other notes: Both schemes have a digest of constant size. The overhead for proof size and verification time below is
an additive overhead in addition to the query qry and the response resp. For simplicity below we assume JOINs of two
tables only. All quantities are implicitly asymptotic. ncols denotes the maximum number of columns in a table.

number of the database columns in the preprocessing phase, resulting in a prohibitive storage
overhead even for medium-sized databases.
• A new VDB construction, qedb10, that supports a representative subset of SQL. Our
construction improves on the state of the art of VDB designs based on authenticated data
structures. In particular, qedb:
▷ is the first scheme of this type achieving proof size completely independent of the database

size;
▷ is the most expressive scheme of its kind at the time of writing;
▷ concretely pushes further the scalability of proving by supporting larger database, both
in terms of number of rows and number of columns.

Our scheme shows improvements over VDBs from general-purpose proof systems as well,
compared to which it offers: competitive—and often superior—performance (see Table 5 and
Appendix A); a substantially simpler architecture which employs only few basic building
blocks (instead of a stack of complex protocols) and does not require writing any circuits;
better security guarantees (by relying on fewer and better understood cryptographic assump-
tions). We also refer the reader to the discussion in Section 4.

• The first abstract framework for VDB constructions. Along the way to our construc-
tion, we provide new theoretical foundations for the design of VDBs: a new framework to
model idealized (information-theoretic) protocols for verifiable databases. In contrast to all
prior work, our approach is the first to decouple the essential ideas behind a construction
from the cryptographic tools used to instantiate them. This conceptual angle brings VDBs
closer to the established practice in the world of SNARKs, which separates the underlying
information-theoretic blueprint from its cryptographic compilation (see [1,5,7,11,17,28,42]).
We stress that while our idealized model for VDB is close in spirit to those in the SNARK
world—where the idealized objects sent around are oracles to polynomials—our framework
is intentionally specialized to the VDB setting and requires inventing a completely new
formalism—which employs vectors and sets as first-class citizens, instead of polynomials.

• An implementation11 and experimental evaluation of qedb. Our results confirms the
practicality of our scheme and its concrete improvements over prior ADS-based construc-
tions. Our—still very unoptimized—implementation shows that our prover easily scales to

10 qedb is a recursive acronym standing for “qedb error-checks databases”. It is also a shameless pun on
it being a proof system for DBs.

11 We are planning to soon make it available as open source.

5

Queries supported by both this work and IntegriDB:
Predicate types: Multi-dim. range queries, list membership, any AND/OR.

Aggregate queries: MAX, MIN, COUNT, SUM, AVG.

JOINs: Equality-based joins over columns, possibly with duplicates.

Queries supported by this work but not by IntegriDB:
Comparison between columns: Predicates involving more than one column
(e.g. “[...] WHERE c1 ≥ 2c2 + c3”).

Aggregation among columns: Expressions involving more than one column in
the SELECT clause (e.g. “SELECT c1 + 2c2 FROM [...]”).

Fig. 1: Query types supported in IntegriDB (top) vs our work (top and bottom).

datasets containing millions of rows for many types of queries and that our verifier is very fast
independently of the query type. Our verification runs below 25ms on aggregation queries
(e.g., SUM or MAX) and selection queries with a response of ≈ 1K rows. On selection queries
with very large outputs (tens of thousands of rows), verification runs in only 100ms. The
ballpark for our proof size on most queries is 1KB.

Additional impact and features of our work.

• A stepping stone for practitioners. Relying on a minimal tech stack and an already deployed
trusted setups (a powers-of τ -setup for KZG has for example been produced by the Ethereum
Foundation [37]), qedb makes verifiable database more accessible. Its implementation can be
easily integrated with off-the-shelf DBMSs (our evaluation uses PostgreSQL). Due to its
modularity, practitioners can simply replace building blocks suiting their needs.

• A stepping stone for future research. Thanks to our framework, protocol designers can im-
prove on our work without reanalyzing its security from scratch, but focusing on the right
building blocks and the underlying approach.

• Post-quantum security. Our framework allows one to obtain a VDB with post-quantum
security in a plug-and-play manner by simply replacing the appropriate primitives (see Re-
mark 6).

We refer the reader to Section 3 for a discussion of interesting open problems stemming from
this paper.

1.3 Motivating applications

Financial data reporting. Consider a financial firm that curates a database market transac-
tions, upon which a third-party reporting system runs analytics queries on behalf of external
clients, such as regulatory entities12. We provide a simple representative example of queries for
this scenario supported by qedb in Fig. 2. The database assumed in the figure contains at least
three tables Account, Asset, Transaction that store data about clients’ accounts, traded assets
and transactions between accounts involving such assets. The setting of financial data report-
ing showcases some of the features of qedb: in this scenario it crucial that such aggregate data
reporting is trustworthy and compliant with regulation [38] [35]. Simpler constructions such as
qedb are easier and cheaper to audit, and thus easier to demonstrate as compliant.
Data market aggregator. An untrusted data aggregator analyzes data from multiple data
providers. The analyses take may take into account several metrics and can be accessed by data
consumers, certifying the validity of Data Service Level Agreements, e.g. all the records in the
reporting data sets must have been updated within the prior 24 hours [30, 67].

12 As a concrete instance of this scenario: in the United States, firms such such as JPMorganChase
and HSBC report annually to the US Securities and Exchange Commission regarding their financial
conditions, regulatory capital, risk metrics and compliance status [51] [47].

6

QTot SELECT SUM(price) FROM Transaction

WHERE account_id = '5938' AND trade_date = '2025-01-01'

↱ Computes total price of transactions executed by an account on a given date

QCntTx SELECT COUNT(*) FROM Transaction

WHERE trade_date BETWEEN '2025-01-01' AND '2025-03-31'
↱ Computes the number of transactions executed within the first quarter

QMatchExp SELECT tx_id, price, expected_price, price = expected_price

FROM Transaction WHERE trade_date = '2025-04-05'

↱ Retrieves the transactions whose executed price equals their expected price

Fig. 2: Example queries for financial data reporting.

Blockchain oracles and blockchain analytics systems. A blockchain oracle [46] feeds data
coming from off-chain sources to smart contracts operating on a blockchain. Assuming that data
source are trusted, it is crucial that an oracle proves to the blockchain that data has not tampered
with [68]. As an additional viewpoint on the last setting, consider a datastore containing a curated
list of transactions executed on a blockchain. Clients are interested in executing analytics-based
queries on such data. Here again, the client can be convinced of the validity of the responses
without having to process the data themselves [39].

1.4 Outline

We will describe our techniques and general approach in Section 2. We discuss additional related
literature and interesting future work in Section 3. Section 4 expands on the merits of the
methodology behind qedb vs general-purpose and/or recursive cryptographic proof systems. In
Section 5 we present the concrete performance of qedb. The bulk of the formal treatment in the
paper is contained in the remainder of the document: Sections 6 and 7 are background sections,
respectively on the type of ADS we will employ and on verifiable databases as a cryptographic
primitive; Section 8 contains our new information-theoretic abstraction (idealized VDBs); in
Section 9 we formalize our new property for vector commitments and accumulators (zero-testing
on accumulated sets), show how to instantiate it and we finally describe our compiler; the bulk
of Section 10 contains the idealized protocol behind qedb.

2 Technical Overview

A stepping stone: idealized protocols. Although a VDB protocols are cryptographic in
nature, our approach starts designing such a scheme by focusing on the essential and non-
cryptographic behavior at its core. The final result will be an astonishingly simple protocol
with obvious correctness and soundness guarantees. This simplicity (together with the efficiency
features stemming from it) constitutes one of the strengths of qedb compared to existing con-
structions in the space. To exemplify our approach, let us consider a simple query template such
as this (we assume the reader is familiar with the basics of SQL):

Q: SELECT C FROM T WHERE SomeCondition

Above, C and T are respectively a column and a table and SomeCondition is some abstract
property through which we want to filter C (e.g., it could stand for C′ ≥ 2 where C′ is some other
column).

The output of such queries will be a tuple of rows in C. If the prover (the server) claims as
output a tuple y, what are the minimal checks for the verifier (the client) to have the guarantee
that the result is correct? For example, it should check that the y is actually derived by reading
C at some subset of indices X and that SomeCondition is satisfied at every index in X and
nowhere else.

7

Clearly we want our verifier to be efficient. It should certainly not run in time linear in the
database; ideally its overhead should be linear in the size of the response alone (which is the
case for qedb). As a stepping stone in that direction, let us consider some “idealized” version
of a VDB protocol where we assume that the prover and verifier can “magically” perform some
steps in constant time. To explain this concept, we will jump directly to an example of a simple
idealized protocol for the query above, which we will break down for the reader in the following
paragraphs. Below, we assume that the prover can send to the verifier what we will call handles
to vectors or sets. The reader can think of them as “immaterial pointers”—to vectors or sets—
and whose size is constant, that is completely independent of the size of the object they refer
to13. To distinguish them from the actual object they refer to, we denote a handle to a set X
(resp. vector v) as X (resp. v). These handles can be useful if the verifier is able to verify some
properties on the underlying object. For instance, a basic test we will provide is a read check:
through read?(u , X ,v), the verifier can check whether v is actually the subvector obtained by
reading the set of indices X in u, i.e., whether uX = v14. Notice that the v does not need to be
a handle in read?; in contrast, u does (the verifier should not run in time |u| in order to read
v since it could be the case that |u| ≫ |v|). Using this basic vocabulary on handles, here is the
sketch of an idealized protocol for query Q:

– During an offline stage, let the verifier hold a handle to C.
– After receiving the query, the prover provides the result y as well X , a handle to X (the set

of indices to be read from C where SomeCondition holds).

– The verifier runs read?(u , X ,v).
– The verifier and the prover run a subprotocol (potentially in parallel) to check SomeCondition

is satisfied at all and only the indices in X .

The correctness and soundness of the protocol above is immediate (under the assumption of
the subprotocol for SomeCondition also being correct and sound). Before we discuss more in
detail how to more generally adopt the approach above for more complex queries—and before we
discuss how we can instantiate the above subprotocol for SomeCondition in the first place—we
shall now clarify where idealized protocols fit into the larger picture of how to construct concrete
VDB schemes.

Our framework for modular VDBs. We develop a framework to design modular VDBs from
the following recipe (see also bottom half of Fig. 3):

(a) First, define an idealized protocol (fully information-theoretic) capturing the essence of your
approach to query verification; then prove its security.

(b) Identify a set of cryptographic building blocks to instantiate the client’s abstract operations
in the idealized scheme from (a).

(c) Invoke one of our compilation results—e.g., Theorem 1—to obtain a concrete VDB protocol
from (a) and (b) (automatically guaranteed to be secure).

Simple, yet powerful idealized protocols. We formalize a class of idealized protocols where
the verifier supports a small set of abstract operations on handles. Through our construction,
qedb we will show how this is sufficient to support a large class of SQL. We stress that this
formalism can be used independently of our specific scheme: it can be used as it is for different
constructions and/or tailored to change the set of supported operations (in the last case, the
compilation theorems should be appropriately modified as well).

Our notion of idealized protocols is inspired from algebraic idealized protocols (e.g., Polyno-
mial IOPs) employed in the SNARK literature, where the prover can send oracle polynomials
and the verifier is endowed with an abstract polynomial evaluation operation on those ora-
cles [1, 7, 11, 17,28,42]. Our notion departs from these formalisms in a few ways: our prover can

13 The reader familiar with the SNARKs literature can think of them as oracles.
14 Here we are using the common notation uX := (ui1 , . . . , uiℓ) whenever X ⊆ [|u|] and X = {i1, . . . , iℓ}.

We also remark that, for sake of clarity, we are presenting read? as a predicate and using a different
notation from the one in our formal treatment, in two ways: a read will have a slightly special role
there and will be applied as a function rather than a check; the set X will not be passed as a handle.

8

KZG [52]
(or other polynomial commitments)

Idealized VDB Compiler VDB

Cryptographic
Building Blocks

input to outputs

input to

Linear-Map (S)VC

⟨u,v⟩ ?
= y

Set Accumulators

X
?

⊆ Y,X ∪ Y
?
= Z

zero-testing on
accumulated set
(Section 9.1)

(additional property)

Fig. 3: Overview of our general results on VDBs through the framework we introduce and from common
authenticated data structures. “(S)VC” stands for “Vector Commitment with Subvector opening”. KZG
can be replaced by other schemes (Theorems 6 and 7).

send different types of oracles (our handles) to both vectors (“slice” handles15) and sets (set
handles); the abstract operations allowed to our verifier are heterogenous and may refer to more
than one handle at once; for sake of simplicity our idealized protocol non-interactive, that is the
prover is allowed to send a single batch of handles and then it remains silent (our final scheme is
evidence that this is already sufficiently powerful). In addition to the handles sent by the prover,
the verifier can also access a set of handles honestly generated during a preprocessing (indexing)
stage of the database. Our final formalism—which we describe in full in Section 8—endows the
verifier with the set of primitive operations below (to which we summarily refer to as idealized
interface).

u
?
= αv + w (homomorphism)

〈
u , v

〉 ?
= y (inner product)

X
?

⊆ Y Z
?
= X ∪ Y Z

?
= X ∩ Y (set ops)

read?(u , X ,v) (read) v
[
X

]
?
= 0 (zero test)

This interface is simple enough to be captured by relatively basic cryptographic primitives. At
the same time, it is extremely expressive, permitting to describe range checks and other complex
predicates (see Fig. 5 and Table 3). Later, when describing qedb, we will return to how this
interface alone can capture complex queries. We will now discuss how an idealized protocol can
be transformed into a full-fledged cryptographic VDB.

Our main compilation results. The reader familiar with authenticated data structures may
have noticed that our idealized interface resembles (to an extent) the functionalities offered by
vector commitments [22] and set accumulators [66]. Vector commitments allow one to commit to
a vector of values and later open a subset J of positions via succinct proofs—a property known
as subvector opening if the proofs are of length sublinear in |J |—while set accumulator allows
one to compute a digest of a set of values and to succinctly prove set membership; occasionally
(as well as in this work) accumulators can prove relations about accumulated sets succinctly,
such as subset or intersection.

Standard accumulators and vectors commitments almost match the operations in the figure
above. As we will soon explain, we can extend the functionalities of these cryptographic primitives
(to which we hereby refer for brevity as ADS) to obtain an exact match the ones required in
idealized scheme. First though, let us see how, with the right primitives under one’s belt, there
is an intuitive compilation strategy to transform an idealized VDB into a cryptographic one.

15 We refer to them as “slices” because intuitively they are often used to point to “slices” of data, e.g.
a column in a table.

9

Our compiler : consider an idealized protocol that captures verification for a set of queries, i.e.,
that is complete and sound on them (such as the sketched one at the beginning of this overview);
for each set handle (resp. slice handle) sent by the idealized prover, let the cryptographic prover
send a corresponding set accumulator (resp. vector commitment) during VDB execution; when-
ever the idealized verifier performs one of the abstract operations, the prover will send a related
proof for it using the related ADS interface (on which we now expand).

Matching the idealized interface and new types of ADS. Let us look more closely at how we
can use cryptographic ADS to handle all the idealized operations. Relations among sets (subset,
etc.) follow immediately by the interface of set accumulators. Homomorphism is immediate too
assuming homomorphic vector commitments. We are able to perform a read? through subvector
openings (with a minor extra tweak). The other operations—inner product and zero test—require
new definitions and, in part, changes in existing constructions in order to instantiate them. We
will now provide a quick overview and refer the curious reader to Section 6 and Section 9.1 for
formal details. The primitive that has the closest interface to the inner product check is that of
Linear-map Vector Commitments (LVC), defined and constructed in [21]. However, they are not
a precise match since their interface does not explicitly accept a commitment to a second vector,
expecting instead the verifier to have it available in full. To the best of our knowledge, zero-
testing proofs—which, given an accumulator to X and a vector commitment to v, guarantees
vj = 0 for every j ∈ X—have no explicit equivalent in any prior literature.

Our work provides the first formal definitions for these properties. In particular, zero-testing
(which takes an accumulator and a commitment to a vector as input) is, to our knowledge, the
first example of formal requirement linking vector commitments and accumulators. Since it is a
natural notion, it may plausibly be of independent interest and useful in other settings.

We stress that, in our context, these properties are key to obtain the succinctness of the
final cryptographic VDB (for example, in the case of zero-testing, because otherwise the prover
would need to send full openings to the sets in order to check for zeros). For the same reasons,
in all these notions, we require the verifier to run in time sublinear in the size of the committed
objects.

Instantiations. Given the discussion above, the final minimal requirements for our compiler are
two primitives ΠLVC and ΠAcc, respectively a homomorphic LVC scheme (supporting our flavor
of inner product test) and a set accumulator supporting set relations, and such that together
they support zero-testing proofs. We show how to instantiate them in two ways—a more concrete
and efficient instantiation and a more generic one (see also Fig. 3):

• From pairings: we show how the pairing-based LVC from [21] and set accumulators from [71]
can, with a few modifications, match our interface. These two primitives are good candidates
not only because of their efficient profile, but also from a technical standpoint in order to
obtain our special properties: both primitives can be seen as committing (under the hood)
to a vector/set through a KZG-style commitment [52], a popular polynomial commitment.

• From any extractable homomorphic polynomial commitment: we observe that the patterns
that allow one to obtain our ADSs through KZG-style primitives are actually more general.
Thus, at the price of a slightly less inefficient instantiation, we can show that a homomor-
phic polynomial commitment suffices to build our special primitives16. This result allows
us to obtain instantiations from other assumptions (for example, post-quantum secure ones
through lattices; see also Remark 6).

A concrete compilation theorem: In our formal sections, we show two compilations theorems
(Theorem 6 and Theorem 7) which intuitively correspond to each of the instantiation classes

16 The resulting scheme is slightly less efficient than the direct instantiation with pairings because
pairing operations offer some shortcuts that are not available with an abstract polynomial commitment
interface. In the latter case, we need to occasionally provide additional evaluation proofs and have
the verifier provide random challenges (the resulting ADS schemes are secure in the random oracle
model). Finally, we remark that, while it is a folklore result that one can obtain vector commitments
and accumulators from polynomial commitments, our technical contribution is to show how our new
properties can be obtained from polynomial commitments alone.

10

described above. Our theorems automatically preserve not only security but also succinctness (a
secure succinct idealized scheme yields a secure succinct VDB). For sake of concreteness below we
state an informal compilation theorem, which can be seen a corollary of our general compilation
theorem Theorem 6 and our instantiations from pairing.

Theorem 1 (informal). Let Πideal be an idealized protocol for query family Q. Then it is
possible to compile Πideal into a VDB protocol ΠVDB for query family Q secure in the AGM
where: (i) the client keeps a KZG commitment for each of the handles in Πideal

17; (ii) the setup
is the standard KZG setup.

The AGM in the statement is only required for the pairing case; it is not required in our
compilation theorem from polynomial commitments alone (Theorem 7). We also believe that it
should be possible to remove the AGM altogether through a different analysis of our building
block (left as future work).

Zooming in on our main construction. Our final construction is obtained by describing an
idealized VDB in the sense above specialized to the SQL setting, applying our compiler and then
finally some standard optimizations for concrete performance (e.g,, batching pairing checks). We
now provide only a high-level view of its design (see Section 10 for details):

• The role of handles: roughly (with exceptions) our construction mainly adopts the mappings:

v ↭ [columns] and X ↭ [rows satisfying a predicate] 18. This is a natural choice in SQL
(and may vary slightly in other types of databases) because slices now offers us a natural
way to filter rows out of columns, one of the the most common operations in databases.
• Composition and invariants: Leveraging the mapping above, set handles have the primary
role of supporting easy composition of different parts of the queries: every time a SELECT or a
JOIN query requires filtering a subset of the rows, we reuse the set handle to “reason” on them
for additional claims (we did this in our sketched idealized protocol earlier by delegating the

check of SomeCondition on X to a subprotocol).

We also adopt other important optimizations at preprocessing time, such as precomputing, for
small domains, which rows in a column contain which value.
Other aspects and technical divergence from IntegriDB. Our compositional approach above stems
from the delicate interplay of slice handles (vector commitments) and set handles (accumula-
tors). Our introduction of vector commitments as main “receptacles for value” is one of the key
differences from the approach in IntegriDB [85], which employs accumulators to represent values
instead of vector commitments. This has two implications: handling duplicated values can be
cumbersome in IntegriDB and cause a loss of succinctness; it also leads to the quadratic factor
in their construction, since IntegriDB must “emulate” some type of vector opening by explicitly
preprocessing how sets of values from one column are linked to those in others (thanks to our use
of set as pointers to rows we do not run into this issue). Our employment of homomorphic vector
commitments also allows us to apply different techniques for aggregation queries (SUM, MAX, MIN,
COUNT) and to obtain a natural form of range proofs that avoid a logarithmic dependency on
column size (which instead IntegriDB incurs).
On updatability. In our exposition so far we have described our framework considering a static
database. Of course, many applications require updating the data and hence the correspond-
ing vector commitments and accumulators. Fortunately, it is not necessary to recompute them
from scratch as data change. This is mainly thanks to the homomorphic properties of the LVC
scheme (see [21, Section 4.4]). Updating the accumulators in the preprocessing cannot be done
in constant-time in a publicly verifiable setting, but our experiments show it to be practical for
several common updates.

3 Related and Future Work

Prior schemes from authenticated data structures (ADS). To the best of our knowledge,
after almost a decade, IntegriDB [85]still essentially represents the state of the art for efficient and

17 NB: We then adopt a “meta-commitment” to all handles to obtain a O(1) size digest.
18 Set handles also occasionally represent values; we exploit this property for JOINs.

11

expressive approaches based on ADS with succinct proofs. The reader can find a comparison of
qedb and IntegriDB in the rest of the main text (including Fig. 1 and Table 1) and in Appendix A.

Other relevant works can be categorized as tree-based (e.g. [58] shows a Merkle tree-like data
structure supporting efficient updates to an authenticated dataset) or signature-based (e.g. [65]).
None of these works supports efficient verification for JOIN queries.

In [64] the authors present a general method for compiling a description of a data structure
into its authenticated counterpart. Their final security relies only on collision-resistant hashing.
As such, this approach cannot take advantage of the optimizations that are possible using alge-
braic commitments. Our work can be seen as adopting a similar abstract angle as that in [64] but
with a slightly more specialized, algebraic-flavored approach (instead of λ-calculus) and resulting
in more succinct schemes.

Several additional references are contained in the survey [75]. We finally cite representative
works on functional commitments, a primitive close in spirit to ADS [7, 15, 18, 23, 24, 34, 52, 56,
61,62,80,81].

Prior schemes from general cryptographic proof systems. vSQL [84] is a system that
provides verifiability for a large subset of SQL queries and it is based on the CMT protocol [31].
In essence, it can be considered the first example of SNARK based on (an optimization of) the
GKR protocol [43], and it incurs in large time and memory overheads when the database grows
to millions of rows. The reader can find an additional comparison to vSQL in Appendix A.

We mention two recent works, that in addition to query verifiability, support zero-knowledge.
ZKSQL [59] is VOLE-based [36] (thus inherently interactive and supporting non-public verifi-
cation only). It supports a large subset of SQL queries, testing over the TPC-H benchmark.
Its performances incur in large overheads as the dataset grows over a half million rows. This
scheme is not succinct. PoneglyphDB [44] is based on the Halo2 proof system [83] and supports
arbitrary SQL queries. It shows better performance than ZKSQL with an asymptotically loga-
rithmic verifier and proof size (improving on the polylogarithmic dependency in vSQL). From
preliminary estimates, PoneglyphDB shows typical proving times and proof sizes comparable
to ours; on the other hand, it shows verification times at least an order of magnitude worse
due to their use of inner product arguments [8] even on relatively small table sizes. While over-
all a performant proof system supporting zero-knowledge, PoneglyphDB requires writing SQL
logic as constraints and its inner workings are quite complex, involving for example polynomial
constraints verification within the circuit (see discussion in Section 5.5. in [44]). Being based
on Halo2, PoneglyphDB relies on recursion. The recent work in [72] provides a VDB scheme
leveraging several tech stacks including Jolt, Halo2 and RiscZero. Other approaches, tracing
back to [63], provide zero-knowledge to very simple queries over key-value datasets [9, 25, 60]
(these last works can be seen as ADS-based ones but we cite them here in the larger context of
zero-knowledge database-like schemes).

Verifiable databases have also received recent attention from commercial efforts [4, 55, 77].
Since these systems offer limited documentation, here we present a preliminary comparison from
the publicly available information. The approaches from Lagrange Labs [55] and Axiom [4]
employ recursion and/or virtual machines under the hood; therefore, the security caveats we
discuss in Section 4 apply; we refer the reader to it for additional discussion. The approach used
by [77] seems philosophically closer to ours and attempts to leverage SQL-specific features as
much as possible, combining it with techniques from multivariate sumchecks [43]. The building
blocks in their code—Dory [57] and HyperPlonk [26]—have a logarithmic overhead for proof
size and verification time. Along these two metrics, their system is likely to offer concretely
worse performance than ours (especially in the case of Dory, due to the heavy use target group
operations). Their HyperPlonk instantiation is likely to have concretely better performance in
general compared to the one we experimentally evaluate in this work. This is due to their use
of multivariate—rather than univariate—building blocks. We stress that in principle one can
instantiate our compiler with similar building blocks (we leave this and the related experimental
evaluation as future work). To the best of our knowledge, despite the phrasing in their documents,
none of these three projects [4, 55, 77] offers actual zero-knowledge (in the sense of hiding parts
of the database that are not part of the response).

12

Future work. A first interesting future line of inquiry could be the application of lookup
relations and lookup arguments (see, e.g., [10,13,14,41,76,82]), as a way to respectively model
and instantiate a variant of our idealized protocols. Lookups seem intuitively close in spirit to
some of the operations we perform in our model. At the same time, they may provide worse
performance (lookups are optimized for multisets, which may be unnecessary for SQL) and they
do not provide a perfect match to our interface. We are currently exploring this avenue.

Another interesting problem is how to add zero-knowledge (hiding features) in a simple
manner to ADS building blocks. Potential approaches may involve equivocable commitments
and some of the techniques used in [82] and in the Curve Trees/Forests lines of work in the
transparent setting under DLOG [19,20].

A final open question is: are there inherent limits to the tradeoffs succinctness–expressivity
of ADS-based approaches? That is, can we prove bounds on, e.g., communication complexity
for ADS-based approaches for expressive queries? The fact that ADS closely follow the query
patterns of data structure for proving/verification suggests we may find such results from the
literature on data structures (both authenticated and not).

4 Discussion: On Methodologies to Build VDBs

The methodology in qedb vs VDBs from general-purpose SNARKs In the introduction
we motivated a modular approach based on authenticated structures by pointing out two draw-
backs in general-purpose proof systems (and in circuit- or constraint- based representations):
we stated that VDBs are more prone to bugs and offer a poorer developer experience. We now
expand on these points and on why qedb proposes improvements in that respects. We argue that
qedb mitigates these problems in at least two ways: offering a simpler representation and simpler
protocols.

As a premise, recall that both qedb and several families of SNARKs—those based on (P)IOPs—
can be seen, from 5000 feet, as consisting of a pipeline of this form:

representation
fed into−−−−−→ (idealized) protocol

compiled into−−−−−−−−→ argument system

Both in general purpose SNARKs and in this paper, the final compilation process is very
simple; we thus focus our comparison on the two ends of the first arrow.

A “representation” of a query qry in qedb directly reflects the SQL operations in qry: it
consists of a series of steps like the ones in Fig. 5, each a set/vector operation. In contrast, a circuit
needs to emulate the relational logic through gates or constraints. The result is usually a more
complicated object. For example, consider a core query operation such as set intersection. When
expressed as a circuit, its most straightforward implementation is not only inefficient—it involves
a quadratic number of steps—but also unnecessarily complicated. More efficient approaches add
even more complexity; they may involve sorting networks and/or handling duplicates (see vSQL,
Sec. VI.C [84]). An auditor or automatic tool will plausibly have an easier time spotting bugs in
code for set intersection represented in the style of Fig. 5 (one constraint in our idealized VDB
model) than, say, in a circuit implementing (at the very least) a sorting network. The same is
arguably true for the developers taking up the task of writing the related code.

The final protocols in qedb are also simpler compared to those in common SNARKs. An
idealized protocol for us consists of operations that almost directly map to the operations in a
query (see Section 10). Given a query, the steps of the protocol boil down to a handful of simple
manipulations of vectors and sets. No algebraic fact is ever invoked in the protocol, which is,
at its core, non-interactive. In contrast a (P)IOP typically involves running several rounds of
interaction, which are usually “compressed” into one through the Fiat-Shamir heuristic (which
requires particular care when implemented; see examples of documented attacks in [33]).

The checks in these idealized protocols typically involve equations over polynomials of various
complexity. Protocols of this type arguably require more expertise to write, read, understand,
analyze or audit (for an intuition of what we mean here, see for example the relatively simple
idealized protocol in Figure 5 of [27]). It is our view that the (substantially structured) setting
of SQL computations can leverage simpler and more easily auditable schemes without major
sacrifices in efficiency.

13

Comparing qedb and approaches based on recursion or “zk”-VMs Here we compare
qedb to alternative designs for general-purpose proof systems, in particular those relying on
recursion and/or a “ZK”-VMs19 While they are at times used as distinct approaches, we discuss
them together because it is very common for them to come hand in hand. In particular we use
recursive proofs to obtain a cryptographically provable VM20.

These designs offers compelling advantages, such as a promising proving performance (albeit
not on consumer hardware and often requiring networks of GPUs) and high expressivity (being
general-purpose they can potentially express any SQL query). Another advantage is a better
developer experience compared to constraint systems or circuits: computation to be proven
can be specified in an arbitrary programming language, as long as one can compile it into the
instruction set of the virtual machine.

On the other hand these systems have a few disadvantages: they are very complex and the
security of some of their building blocks is not well understood. Regarding the complexity—and
hence auditability and maintanibility of the stack, etc.—these designs rely on even more layers
and moving parts than the SNARKs we described earlier: a general proof system—typically a
STARK—is used in a recursive fashion to prove statements about a VM execution (which involves
modeling registers, memory, and so on). SQL query execution is then described on top of this
last layer. From a security standpoint, recursive proof systems—especially those including Fiat-
Shamir challenges generation in the recursion step, a common heuristic underlying “ZK”-VM
implementations—have been mentioned as being potentially sensitive to recently documented
attacks on Fiat-Shamir (see for example [54]).

5 Implementation and Experimental Evaluation

5.1 Implementation and experimental setup

We have implemented our construction using the Rust programming language and the Arkworks
library [2] for efficient cryptographic operations. We use the BLS12-381 as a pairing-friendly
elliptic curve. We run our experiments in a multi-threaded setting on a commodity laptop: a
MacBook Pro featuring 11 cores and 36 GB of RAM. (Note that our prover has very low memory
requirements: less than 3 GB of RAM to handle a database of 100,000 rows.)

Experimental queries and dataset. We performed our experiments using the queries described
in Section 1.3 (see also Fig. 2). These queries showcase some of the expressivity features of our
system. Overall, they involve different types of queries—aggregate queries (SUM and COUNT) as
well as SELECT—and different types of filtering conditions—conjunctions of predicates, range
queries, simple equality tests on target values, comparison among columns21.

The test database consists of a single table with columns populated through synthetic data
(generated by sampling random values in the appropriate domain and converting them into
scalars). Our main experiments in this section will be on a table with 100,000 rows. This number is
chosen both because it is representative of a medium-sized DB and because it roughly corresponds
to the cut-off point where previous state-of-the-art solutions (IntegriDB [85]) experimentally fails
to be able to perform proving due to its memory usage22. In contrast, qedb can run on DBs of
millions of rows. We performed experiments on these larger tables too to see how our scheme
scales (we will provide details on the related performance in this section). The SELECT inQMatchExp

has a response of 1K rows.

19 A virtual machine that lends itself to cryptographic proofs. We stress that, almost without exception,
the “ZK” is a misnomer—these systems do not offer zero-knowledge (hence the quotation marks).

20 There are notable exceptions to this template, e.g., the lookup singularity approach used in Jolt [3,12].
21 We defer a full experimental evaluation including JOIN queries to the next revision of this article. We

stress that both our approach to JOINs and the queries evaluated in this section share the same set
of essential operations underlying them. Details on our approach are on page 37.

22 This was tested on a 128GB RAM machine; the IntegriDB paper also documents this phenomenon
with similar numbers.

14

Query Prover Time Verifier Time Proof Size

QTot 1.21 s 13.00 ms 0.66 KB
QCntTx 15.59 s 21.81 ms 5.13 KB

QMatchExp 6.15 s 25.17 ms 0.98 KB

Table 2: Experimental evaluation over queries from Fig. 2 on a DB with 100K rows.

5.2 Experimental Results

We now discuss our main experimental results, which are reported in Table 2.

Proof Size. The proof sizes for QTot and QMatchExp reflect a typical ballpark for the proof sizes
in qedb, i.e., 0.5-1KB. These two are distinct types of queries, respectively a SUM and a SELECT.
The larger proof in QCntTx is due to our range query; this can be reduced by at least 25% through
simple optimizations. As mentioned, our proof size is independent of the sizes of the response
and the DB.

Verification time. Our verifier runs in 15–25 ms on all three of the queries. This is also a
common ballpark which we found in other experiments we performed. The verification time for
QCntTx does not grow substantially despite the larger proof size because it mostly consists of
pairings equations which can easily be checked in batch. The only query that admits different
response sizes—and where, as a consequence, the verifier may need to perform more work—is
QMatchExp. We tested this query on larger responses and observed that even increasing its size by
a factor 5× at most doubles the verification time (which is still ≈ 50 ms).

Proving time. Our prover runs is able to run in one second on our query QTot; the other proving
times are both in the ballpark of ten seconds. The higher proving time for QCntTx is due to the
range proofs, whereas that for QMatchExp is mainly due to the type of query, a SELECT (in which
the proving also has some dependency on the response size). From our additional experiments,
our prover scales linearly (with a constant < 1) in the size of the database for aggregation queries
such as QTot and QCntTx. For example, on a DB of ≈ 1M rows (10× larger), both queries run
in time ≈ 8× that reported in Table 2. QTot in particular still runs in only approximately ten
seconds. For SELECT queries, increasing the DB size has a quasilinear behavior and thus a slightly
larger overhead compared to other two (the concrete factor depending also on the response size).

Pre-processing. We now report on the time required to generate the cryptographic material
during the DB preprocessing (not in Table 2). Generally this number grows linearly in the total
number of rows and columns in the database. For example, for a table with 100K rows it takes
approximately 10s for 5 columns and around 16s for 9 columns. For a larger dataset of 1M rows,
the generation time increases to roughly 80s for 5 columns and about 130 s for 9 columns.

6 Background: Authenticated Data Structures

6.1 Notation and cryptographic assumptions

We assume basic familiarity with bilinear groups and related assumptions:

Bilinear groups. A bilinear group is given by a description gk = (p,G1,G2,GT , e) with additive
notation such that p is prime, so F = Fp is a field. G1,G2 are cyclic (additive) groups of prime
order p. We use the notation [a]1, [b]2, [c]t for elements in G1,G2 and GT respectively. e : G1 ×
G2 → GT is a bilinear asymmetric map (pairing), which means that ∀a, b ∈ Zp, e([a]1, [b]2) :=
[ab]t. We implicitly have that [1]t := e([1]1, [1]2) generates GT . We use [a]1,2 to refer to two group
elements [a]1 ∈ G1, [a]2 ∈ G2. In our constructions, we denote by G(p) the algorithm that, given
as input the prime value p, outputs a description gk = (p,G1,G2,GT , e).

15

Lagrange polynomials. Given n distinct nonzero field elements x1, . . . , xn ∈ F and correspond-
ing points P1, . . . , Pn, Lagrange interpolation computes a linear combination of these points to
reconstruct a target polynomial P defined as:

P (x) =

n∑
i=1

λi · Pi(x),

where the Lagrange coefficients λi are given by

λi =

n∏
j=1
j ̸=i

xj
xj − xi

∈ F.

In our instantiations we assume fast FFTs to compute the above.

Assumptions. We state the computational assumptions used in this work.

Definition 1. The q-DLOG assumption holds relative to G(1λ) if for all PPT adversaries A,
the following holds:

Pr
[
τ ← A(gk, {[τ i]1}qi=0, {[τ

i]2}qi=0) | gk← G(1
λ); τ ← F

]
≤ negl(λ).

Definition 2 ([45]). The q-BSDH assumption holds relative to G(1λ) if for all PPT adver-
saries A, the following holds:

Pr

[
(c,

1

(τ − c)
e([1]1, [1]2))← A(gk, {[τ i]1}qi=0, {[τ

i]2}qi=0) | gk← G(1
λ); τ ← F

]
≤ negl(λ).

The AGM. The algebraic group model (AGM) [40] is an idealized model, where the adversary is
modeled as an algebraic algorithm. Algebraic algorithms may only compute group elements as
linear combinations of group elements observed so far. Therefore, whenever they output a group
element X ∈ G1, they also provide a representation {αi}Ni=1 of X =

∑N
i=1[αigi]1 as a function

of previously seen elements [g1], . . . , [gN] ∈ G1 of the same group.

6.2 Functional commitments with unique setup

A functional commitment is a commitment scheme that supports special (“functional”) openings.
Set accumulators, polynomial and vector commitments are all special cases of this notion. All
the underlying building blocks we will define will rely on the a single setup. Therefore in our
construction we instantiate these blocks with tools that use a compatible setup procedure. The
setup will have the following syntax:

Definition 3. A setup Setup(1λ) → (prk, vrk) is a probabilistic algorithm that takes as input
the security parameter λ, a size bound, and outputs a pair of keys (prk, vrk) (for proving and
verification respectively). We assume λ implicitly provides a size parameter (e.g., vector size)
for all our schemes.

Since all functional commitments are commitments, they will all have binding properties and
a common syntax, which we now define:

Definition 4. (Commitment scheme). A commitment scheme Com = (Setup,AlgoCom) is
composed by a message space M and a tuple of the following polynomial-time algorithm (we
recall that the Setup algorithm is defined in Definition 3):

– AlgoCom(prk,m)→ (cm, aux) is a deterministic algorithm that takes as inputs prk, a element
m ∈M and outputs the commitment cm and an auxiliary value aux.

A commitment scheme satisfies the following binding property.

Binding: For any security parameter λ ∈ N and any PPT adversary A, it holds that:

Pr


cmm0

← AlgoCom(1λ, prk,m0)∧

cmm1 ← AlgoCom(1λ, prk,m1)∧

cmm0
= cmm1

∣∣∣∣∣∣∣∣∣
(prk, vrk)← Setup(1λ)

(m0,m1)← A(1λ)

m0,m1 ∈M

 ≤ negl(λ).

16

6.3 Linear-map vector commitments

A linear-map vector commitment23 (LVC) has these core capabilities: the ability to commit to a
vector succinctly; the ability, given two commitments to vectors cmu and cmv to verify (and—on
the prover side—prove) that ⟨u,v⟩ equals some claimed value y.

Definition 5. Linear-map Vector Commitment. A Linear-map Vector Commitment (LVC)
scheme for vectors in Fn is a tuple of probabilistic polynomial time algorithms (CommitVec,OpenLin,VerifyLin)
(with Setup algorithm defined in Definition 3) that work as follows:

– CommitVec(prk,v)→ (cm, aux) is a deterministic algorithm that on input the proving key prk
and a vector v = (v1, v2, . . . , vm) ∈Mm, returns a commitment cm and auxiliary information
aux.

– OpenLin(prk, auxu, auxv, y)→ πy is a deterministic algorithm that takes as input prk, auxil-
iary information about two (committed) vectors and outputs a proof π that y = ⟨u,v⟩.

– VerifyLin(vrk, cmu, cmv, y, π) → 0/1 is a deterministic algorithm (running in time sublinear
in the size of the committed vectors) that takes as input the verification key vrk, commitments
cmu and cmv, a proof π and accepts or rejects.

An LVC scheme satisfies the following properties: Correctness requires that if a prover com-
mits to two vectors and computes their inner product honestly, then the proof they generate will
always convince the verifier of the correct result; binding property means that it is infeasible for
an adversarial committer to produce a commitment cm and two valid openings u and v; Homo-
morphic property means that given commitments cmu to u and cmv to v, it must be efficient
to compute a commitment cmu+v by computing cmu+v = a · cmu + b · cmv; finally, extractability
property means that there exists an efficient extractor E such that, given a commitment cmu and
oracle access to an adversarial prover P∗ that produces a proof π accepted by the verification
algorithm VerifyLin for some commitment cmv and scalar y, the extractor can recover a vector u′

such that CommitVec(u′) = cmu ∧ ⟨u′,v⟩ = y with all but negligible probability. More formally:

LVC Correctness: An LVC scheme is perfectly correct if for all λ ∈ N, and any u,v ∈ Fn,

Pr

VerifyLin(vrk, cmu, cmv, y, πy) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(vrk, prk)← Setup(1λ, F)

(cmu, auxu)← Commit(prk,u)

(cmv, aux)← Commit(prk,v)

πy ← OpenLin(prk, auxu, auxv, y)


= 1.

Extractability: For all λ ∈ N, for all PPT A there exists an efficient extractor EA such that:

Pr


VerifyLin(vrk, cmu, cmv, y, π) = 1∧
⟨u∗,v∗⟩ ≠ y ∨
(cmu, ·) ̸= Commit(prk,u∗)∨
(cmv, ·) ̸= Commit(prk,v∗)

:

(prk, vrk)← Setup(1λ, F)

(cmu, cmv, y, π)← A (prk)

(u∗,v∗)← EA(prk, cmu, cmv)


≤ negl(λ).

Homomorphism of Commitments: Given two vectors u and v and any scalars a, b it holds
that if w = a · u + b · v then Commit(prk,w) = a · cmu + b · cmv, where cmu and cmv are
respectively the commitments of u and v.

Remark 1 (Difference with [21]). We observe that our interface is slightly different than the one
in the original presentation of linear-map vector commitments in [21]. There the verifier holds a
commitment cmu and a plaintext v (the linear function). In our case both are committed. This
symmetric interface is more versatile in our setting; we describe how to realize it in Section 6.7.
23 Note to the reader: in our syntax we consider a restricted version of linear-map (inner product). We

keep the terminology “linear map” because vector commitments that can prove inner products can
be immediately lifted to ones proving general linear maps [21].

17

6.4 Subvector-opening vector commitments

A Subvector Opening Vector Commitment (VC) scheme is a tuple of probabilistic polynomial
time algorithms (CommitVec,OpenSub,VerifySub).

Definition 6. Subvector Opening Vector Commitment. A Subvector Opening Vector Com-
mitment (VC) scheme for vectors in Fn is a tuple of probabilistic polynomial time algorithms
(CommitVec,OpenSub,VerifySub) (with Setup algorithm defined in Definition 3) that work as
follows:

– OpenSub(prk, auxu, I) → π is a deterministic algorithm that takes as input prk, a vector u,
a set of indices I and outputs a proof π.

– VerifySub(vrk, cmu,v, I, π)→ 0/1 is a deterministic algorithm (running in time sublinear in
the size of the committed vector u) that takes as input the verification key vrk, commitments
cmu, a subvector v, a set of indices I, a proof π and accepts or rejects.

The commitment algorithm CommitVec is the same used by LVC(see Def.5). VC scheme satisfies
all the properties of LVC (see Def.5) where only correctness and extractability change as follows:

The properties of a Vector Commitment (VC) scheme (see Section 6.7 for details) match
those of an LVC scheme, except that: (i) correctness requires that if the prover commits to
a vector v and opens a subvector u at indices I ⊆ [n̄], then the proof from OpenSub always
convinces the verifier that u is correct; (ii) extractability requires an efficient extractor E such
that, given a commitment cmu and oracle access to an adversary P∗ outputting a proof π
accepted by VerifySub for some I, it can recover u′ satisfying CommitVec(prk,u′) = cmu with all
but negligible probability.

Correctness For all λ ∈ N,v ∈ Fn, X := {j1, . . . , jℓ} ⊆ [n],w ∈ Fℓ such that (vj1 , . . . , vjℓ) =
(w1, . . . , wℓ), it holds that:

Pr

VerifySub (vrk, cmv,w, X, π) = 1 :

(prk, vrk)← Setup(1λ)

(cmv, auxv)← CommitVec(prk,v)

π ← OpenSub (prk, auxv, X)


≥ 1− negl(λ).

Extractability: For all λ ∈ N, for all PPT A there exists an efficient extractor EA such that:

Pr

VerifySub (vrk, cmv,w, X, π) = 1∧(
cmv ̸= CommitVec(prk,v)∨
(vj1 , . . . , vjℓ) ̸= (w1, . . . , wℓ)

) :

(prk, vrk)← Setup(1λ)

(cmv, X := {j1, . . . , jℓ}, π)← A (prk)

v ← EA(prk, cmv)


≤ negl(λ).

6.5 Set accumulators

A Set Accumulator24 (SA) is a tuple of PPT algorithms (Accum,OpenOp,VerifyOp) (with Setup
algorithm defined in Definition 3) such that:

– Accum(prk, S) → acc is a deterministic algorithm that takes as inputs a set S and prk and
outputs the accumulator value acc;

– OpenOp(prk, S1, S2, op) → (S = op(S1, S2), πop) is a deterministic algorithm that takes as
inputs sets S1, S2, an operation op ∈ {⊆,∩,∪, \}, and outputs a proof πop that S obtained
by applying op to S1 and S2.

– VerifyOp(vrk, accS , accS1
, accS2

, op, πop)→ 0/1 is a deterministic algorithm (running in time
sublinear in the size of the accumulated sets) that takes as inputs an accumulator accS , two
accumulators accS1

, accS2
, an operation op ∈ {⊆,∩,∪, \}, a proof πop that the set in accS is

given applying op to accS1 and accS2 , and accepts or rejects.

24 Note to the reader: we do not require membership proofs from accumulator schemes, only set com-
parison operations.

18

We require that a set accumulator (see Section 6.7 for details) scheme (Accum,OpenOp,VerifyOp)
is correct, which means that for correctly computed opening operation, the relative verify oper-
ation accepts. Moreover, for an adversary it is computationally infeasible to find W ̸⊆ S (resp.
W ̸= S ∩ T , W ̸= S ∪ T , W ̸= S \ T) and a proof πW such that the associated verification pro-
cedure accepts. The set accumulator must achieve extractability, meaning that given accepting
proofs from an adversarial prover, the probability to extract values from accumulators that are
incorrect in negligible. We also require that a set accumulator is homomorphic, i.e., guarantees
that given accumulators accS1

and accS2
of sets S1 and S2 respectively, it is efficient to compute

a new accumulator accS1∪S2
that is a valid accumulator to the corresponding sets.

Correctness For all λ ∈ N, S1, S2 sets of elements in F, the following is overwhelming:

Pr

VerifyOp(vrk, accS , accS1 ,

accS2 , op, πop) = 1
:

(prk, vrk)← Setup(1λ)

accS1 ← Accum(prk, S1)

accS2 ← Accum(prk, S2)

(S = op(S1, S2), πop)← OpenOp(prk, S1, S2, op)


Extractability: For all λ ∈ N, for all PPT A there exists an efficient extractor EA such that

the following probability is negligible:

Pr


VerifyOp(vrk, accS , accS1

, accS2
, op, πop) = 1∧

accS ̸= Accum(prk, op(S1, S2))∨
accS1

̸= Accum(prk, S1)∨
accS2

̸= Accum(prk, S2)

:

(prk, vrk)← Setup(1λ)

(accS , accS1
, accS2

, op, πop)← A (prk)

(S, S1, S2)← EA(prk, accS , accS1
, accS2

)


6.6 Polynomial commitments

A polynomial commitment scheme (PCS) PCom = (Commit,OpenPos,VerifyPos) (with Setup
algorithm defined in Definition 3) is defined as follows:

– Commit(prk, ϕ(x))→ (cm, d) is a probabilistic polynomial time algorithm that takes in input
the public key and a polynomial ϕ(x) returns a commitment cm of ϕ(x) and a decommitment
d.

– OpenPos(prk, ϕ(i), i, d)→ (i, ϕ(i), πi) is a probabilistic polynomial time algorithm that takes
in input the public key, the polynomial evaluated in i, the value of i and the decommitment
value and outputs a proof πi for the evaluation ϕ(i) of ϕ(x) at the index i, together with i
and ϕ(i).

– VerifyPos(vrk, cm, i, ϕ(i), πi) → 0/1 is a polynomial time algorithm (running in time sub-
linear in the size of the committed polynomial ϕ) that takes in input the public key, the
commitment, the evaluation at index i of the polynomial, and the proof πi and outputs 1 in
case ϕ(i) is indeed the evaluation of the polynomial at index i and 0 otherwise.

A PCS is succinct if the size of commitments and evaluation proofs grows at most logarithmically
with the degree of committed polynomials. We require that a PCS satisfies the binding property
meaning that it is infeasible for an adversary to find an opening for the commitment to two
different polynomials ϕ and ϕ′. The PCS must satisfy evaluation binding, that captures the
infeasibility for an adversary to prove two distinct evaluations of a committed polynomial on
the same input. We also require that PCS achieves extractability, meaning that whenever an
adversary outputs a valid commitment cm and a proof π for the evaluation in the point (x, y),
there exists an efficient extractor that can recover the polynomial ϕ such that ϕ(x) = y and cm
is the commitment of ϕ. The last property we require for a PCS is the homomorphic property
that guarantees that given commitments cmϕ and cmψ of polynomials ϕ and ψ respectively, it is
efficient to compute a new commitment cmϕ+ψ that is a valid commitment to the corresponding
operation on the polynomials, without requiring access to the underlying coefficients.

19

Correctness For all λ ∈ N, ϕ(x) ∈ F[x], i ∈ [n], it holds that:

Pr

VerifyPos(vrk, cm, i,
ϕ(i), wi) = 1

:

(prk, vrk)← Setup(1λ)

(cm, d)← Commit(prk, ϕ(x))

(i, ϕ(i), wi)← OpenPos(prk, ϕ(i), i, d)


≥ 1− negl(λ).

Extractability: For all λ ∈ N, for all PPT A there exists an efficient extractor EA such that:

Pr

VerifyPos(vrk, cm, i, ϕ(i), wi) = 1∧
(cm, ·) ̸= Commit(prk, ϕ′(x))∨
ϕ′(i) ̸= ϕ(i)

:

(prk, vrk)← Setup(1λ)

(cm, i, ϕ(i), wi)← A (prk)

ϕ′(x)← EA(prk, cm)


≤ negl(λ).

6.7 Building blocks (Instantiations)

We call n̄ the size of the vectors; for simplicity we assume it is some well-defined function (a
polynomial) of the security parameter λ.

Setup. The setup procedure we require is the standard one for KZG:

Setup(1λ, n̄)→ (prk, vrk): Given the security parameter and the size bound, Setup works as fol-
lows:
– Generate the group description gk = (p,G1,G2,GT , e)← G(p); Define the multiplicative

group H = {h1, . . . , hn̄} in F: Compute the Lagrange polynomials {λj(X)}n̄j=1 over H;
Sample τ ←$ F.

– Output prk =
(
{[τ i]1,2, [λi(τ)]1}n̄i=1

)
and vrk =

(
[1]1,2,

{
[τ i]2, [λi(τ)]2

}n̄
i=1

)
.

Linear-map Vector Commitment. This is a linear-map vector commitment scheme for a
Lagrange basis {λi(X)}n̄i=1 over a multiplicative group H = {h1, . . . , hn̄} of size n̄ in F. We
encode a vector a ∈ Fn̄ as a polynomial a(X) =

∑n̄
i=1 aiλi(X).

CommitVec(prk,a)→ (cm, aux): Compute cm =
∑n̄
i=1 ai[λi(τ)]1 and output (cm,a). Notice that

CommitVec is the instantiation of AlgoCom.
OpenLin(prk,u,v, y)→ πy: Find R(X), H(X) such that deg(R) < n̄− 1 and(

n̄∑
i=1

uiλi(X)

)(
n̄∑
i=1

viλi(X)

)
− n̄−1y = XR(X) + t(X)H(X).

Define R̂(X) = X2R(X) and c̃mv =
∑n̄
i=1 vi[λi(τ)]2. Output π = ([R(τ)]1, [H(τ)]1, [R̂(τ)]1, c̃mv

)
.

VerifyLin(vrk, cmu, cmv, y, π)→ 0/1: Parse π =
(
[R]1, [H]1, [R̂]1, c̃mv

)
and output 1 if and only

if e(cmu, c̃mv)−e(n̄−1y[1]1, [1]2) = e([R]1, [τ]2)+e([H]1, [t(τ)]2), e([R]1, [τ
2]2) = e

(
[R̂]1, [1]2

)
,

and e
(
cmv, [1]2) = e

(
[1]1, c̃mv).

Theorem 2 (Implicit in [21]). The scheme above is a correct, binding and extractable ho-
momorphic LVC (Section 6.3) in the AGM under the q-BSDH assumption.

Proof (Proof of Theorem 2).

– Completeness follows by inspection.
– The homomorphic property follows from the following observation. Given the commitments
cmu =

∑N
i=1 ui[λi(τ)]1 cmv =

∑N
i=1 vi[λi(τ)]1 respectively of u and v, let w = a · u+ b · v,

the commitment cmw of w is a · cmu + b · cmv.

20

– The scheme satisfies binding under q-DLOG assumption in the AGM (Definition 2).
– The scheme satisfies extractability in the AGM model under the q-BSDH assumption. We
follow and expand the proof in [21, Thm. 6]. The proof proceeds trough a sequence of
games. The first game G0 is the original game of the binding game (Def. 4). A outputs
(cmu, cmv, y, π) and (cmu, cmv′ , y

′, π′) with y ̸= y′ but both verify it is possible to extract
v and v′ from cmv and cmv′ . G1 is the same as G0 but aborts if deg(R) > m − 2 where
R(X) is the algebraic representation of [R]1 from π. If G0 and G1 are distinguishable we
can construct an adversary B that solves qSDH by extracting high-degree terms from R(X).
The advantage of A in G1 is negligible, indeed, given cmu(X) =

∑m
j=1 ujλj(X) +Xmû and

P (X) = cmu(X)cmv(X) −m−1y − XR(X) − t(X)Q(X), the verification equation implies
P (τ) = 0. Therefore there are two cases:
Case 1: P (X) = 0. Then:

m∑
j=1

ujvjλj(X) +Xmû

m∑
j=1

vjλj(X) = m−1y +XR(X)

=⇒
m∑
j=1

ujvjλj(0) = m−1y (evaluate at 0)

=⇒
m∑
j=1

ujvj = y (since λj(0) = m−1)

Thus there exists u with ⟨u,v⟩ = y and A loses.
Case 2: P (X) ̸= 0 but P (τ) = 0. We build B against dlog:
1. Given [τ]1, B computes roots of P (X);
2. Checks which root τ ′ of P (X) satisfies [τ ′]1 = [τ]1.
The only point that remains to prove is that the value c̃mv in π and the value c̃mv′ in π

′ are
equal to the values cmv and cmv′ received in input from VerifyLin, but it follows from the
last check e

(
cmv, [1]2) = e

(
[1]1, c̃mv) of VerifyLin.

Subvector Opening Vector Commitment A Subvector Opening Vector Commitment (VC)
scheme for vectors in Fn̄ is a tuple of probabilistic polynomial time algorithms (Setup,CommitVec,
OpenSub,VerifySub). CommitVec is equal to the commitment algorithm of LVC. The others
algorithms work as follows:

– OpenSub(prk, auxu, I) → π: Let I = {j1, . . . , jℓ}, and u(x) be the interpolation of u, the
vector v = (v1, . . . , vℓ) is the subvector of u in I, i.e., vi := uji for i = 1, . . . , ℓ. Compute
v(X), the polynomial obtained by interpolation so that v(j) = vj ,∀j ∈ I. Find H(X)
such that for tI(X) :=

∏
i∈I(X − hi) it holds that u(X) − v(X) = tI(X)H(X). Output

π = [H]1 = [H(τ)]1.
– VerifySub(vrk, cmu,v, I, π)→ 0/1: Compute [tI]2 = [tI(τ)]2, and v(X) as above, and output
1 if and only if e(cmu − [v(τ)]1, [1]2) = e([H]1, [tI]2).

This construction is described in [21, Section 6.3, Appendix C] and is originally from [79].

Theorem 3 (Implicit in [21]). The scheme above is a correct, binding and extractable homo-
morphic VC (Section 6.4) in the AGM.

The theorem follows [21, Sections 5.2 and 6.3; Appendix C].

KZG Polynomial Commitment. The polynomial commitment scheme used in this paper is
the construction defined in [52] with polynomials in F[x].

Commit(prk, ϕ(x))→ (cm, aux): Compute cm =
∑n̄
i=1 ϕi[τ

i]1 and output (cm, ϕ(x)). Notice that
Commit is the instantiation of AlgoCom.

OpenPos(prk, ϕ(x), i)→ (i, ϕ(i), πi): Compute Q(X) = ϕ(x)−ϕ(i)
x−i and πi =

∑n̄
i=1Qi[τ

i]1 and
output (i, ϕ(i), πi).

21

VerifyPos(vrk, cm, i, ϕ(i), πi)→ 0/1: If e(πi, [τ]2 − i[1]2) = e([1]1, cm − ϕ(i)[1]2) output 1 and 0
otherwise.

Theorem 4. The KZG scheme is a secure PCS (Section 6.6) in the AGM.

This theorem follows from [28, Appendix B.3] and [11, Section 7].

Set Accumulator. We note that the KZG polynomial commitment scheme can be used as a
set accumulator by committing to the characteristic polynomial of the set itself. Given a set S,
the characteristic polynomial PS(x) is defined as PS(x) =

∏
s∈S

(x− s). Following [71], we remark

that the KZG-based set accumulator can be used to prove that a set I is the intersection of two
accumulated sets S1, S2, that a set Z is the union of two accumulated sets S1, S2 and that a set
T is the subset of an accumulated set S.

Accum(prk, S)→ acc: Given S, compute PS(x) and (cm, d)← KZG.Commit(prk, PS(x)). Return
cm.

A Set Accumulator is a tuple of PPT algorithms (Setup,Accum,OpenOp,VerifyOp) such that:

– Accum(prk, S)→ acc is a deterministic algorithm that takes as inputs a set S and the public
key prk and outputs the accumulator value acc.

– OpenOp(prk, S1, S2, op)→ (S = op(S1, S2), πop) is defined as follows for the different opera-
tions:
Subset: is a deterministic algorithm that takes as inputs the sets S1 and S2 such that

S1 ⊆ S2, the operation ⊆, prk and outputs S1 and a proof π⊆ that S1 is a subset of S2;
Union: is a deterministic algorithm that takes as inputs sets S1 and S2, prk and outputs

S = S1 ∪ S2 and a proof π∪ that S is the union of S1 and S2;
Intersection: is a deterministic algorithm that takes as inputs sets S1 and S2, prk and

output S = S1 ∩ S2 and a proof π∩ that S is the intersection of S1 and S2.
Set Difference: is a deterministic algorithm that takes as inputs sets S1 and S2, prk and

output S = S1 \ S2 and a proof π\ that S is the intersection of S1 and S2.
– VerifyOp(vrk, accS , accS1

, accS2
, op, πop) → 0/1 is defined as follows for the different opera-

tions:
Subset: is a deterministic algorithm that takes as inputs accumulators accS , accS1 , accS2 ,

the operation ⊆, a proof π⊆ and accepts or rejects, for simplicity we are taking the same
interface for this verification, but the verifier ignores the value accS and checks that S1

is a subset of S2;
Union: is a deterministic algorithm that takes as inputs accumulators accS , accS1

, accS2
,

vrk, the operation ∪, a union proof π∪ and accepts or rejects;
Intersection: is a deterministic algorithm that takes as inputs accumulators accS , accS1 ,

accS2
, vrk, the operation ∩, a union proof π∩ and accepts or rejects.

Set Difference: is a deterministic algorithm that takes as inputs accumulators accS , accS1
,

accS2
, vrk, the operation \, a difference proof π\ and accepts or rejects.

A set accumulator scheme satisfies the properties of correctness, binding, extractability and
homomorphism as defined for the LVC, where AlgoCom is instantiated with Accum and is the
setup algorithm presented in Def.4. The message spaceM is Fn.

For the opening and verifications of ⊆, ∪, ∩, and \ we describe them using the following
subprotocols:

Quotient: Note that to prove that a given polynomial P (X) is 0 in points T = (t1, . . . , tℓ), it is
enough to divide P (X) for the vanishing polynomial Zt(X) :=

∏
t∈T (X−t). If the reminder is

0 Zt(X) | P (X) and P (X) is 0 in the points in T . This is equivalent to finding a polynomial
q(X) such that q(X) · Zt(X) = P (X). Given a set S = {s1, . . . , sℓ}, the commitment to
S is the commitment to the polynomial PS(X) =

∏
s∈S

(x − s). To prove that S is 0 in T ,

the prover computes q(X) = PS(X)/Zt(X). The prover computes [PS(τ)]1, [Zt(τ)]1, and

22

[q(τ)]1. Moreover, using the Fiat-Shamir transformation computes a random value r and
the evaluation yp = PS(r), yq = q(r) yz = Zt(r) and the respective opening proofs πp,
πq, πz. The prover sends ([PS(τ)]1, [Zt(τ)]1, [q(τ)]1, yp, yq, yz, πp, πq, πz) to the verifier. The
verifier recomputes r, verifies the proofs πp, πq, πz and checks that yp = yq · yz. For the
Schwartz-Zippel lemma this procedure is sound.

Subset: Given the Quotient procedure, the Subset procedure can be implemented by observ-
ing that given sets S and T , proving that T ⊆ S is equivalent to say that PT (X) =∏
t∈T

(X − t) divides PS(X) =
∏
s∈S

(X − s). Therefore the prover can send to the verifier

([PS(τ)]1, [PT (τ)]1, π = ([q(τ)]1, ys, yq, yt, πs, πq, πt)) computed as before and the verifier can
perform the same check done in the case of Quotient.

Set difference: Intuitively given sets S and T we can prove their difference through the ap-
proach for subsets above: given PS(X) and PT (X) the respective polynomials encoding S
and T , PS\T = PS(X)/PT (X) encodes S \ T .

Intersection: The Intersection protocol can be computed using the previous protocols, in-
deed given sets S and T , the intersection I = S ∩ T is correct if (i) I ⊆ S ∧ I ⊆ T and
(ii) (S \ I) ∩ (T \ I) = ∅. Condition (i) can be satisfied using the Subset protocol. Con-
dition (ii) can be proved observing that I contains all the elements only if exists poly-
nomials q1(X) and q2(X) such that q1(X) · PS−I(X) + q2(X) · PT\I(X) = 1 (see [71,
Lem. 6]). Therefore, for condition (ii) the prover computes [q1(τ)]1, [q2(τ)]1, computes a
random r and sends in addition to the values for the verification of condition (i) also
([q1(τ)]1, [q2(τ)]1, PS\I(r), PT\I(r), q1(r), q2(r), πs, πt, πq1 , πq2), where πs, πt, πq1 , πq2 are the
proof of opening of the polynomials in r. The verifier checks the subset condition as done
in the Subset procedure and in addition checks the proofs πs, πt, πq1 , πq2 and the equation
q1(r) · PS\I(r) + q2(r) · PT\I(r) = 1.

Complement (only for known sets of polynomial size n̄): 25 If the maximum dimension
of the sets is known and is n̄, it is possible compute the complement of a set S as U−S, where
U = [n̄] is the set containing all the n̄ elements. Since the verifier knows n̄, this protocol is
equivalent to the Set difference protocol.

Union: Intuition: to implement a union protocol on sets (of maximum size n̄), the we can exploit
De Morgan’s law stating that S ∪T = ¬(¬S ∩¬T), where the prover implements ¬ with the
complement protocol.

Theorem 5. The set accumulator above is a secure set accumulator scheme (Section 6.5) in
the AGM under the q-BSDH assumption.

7 Background: Cryptographic Verifiable Databases

The following definitions are a minor variation of those from [69]. Below, we assume the existence
of an algorithm ValidDB(db) that on input an alleged database string db and (implicitly) a size
parameter n checks whether db is a valid database of size n.

Definition 7 (VDB). A (non-interactive) VDB consists of four probabilistic polynomial-time
(PPT) algorithms: a setup algorithm Setup generating the public parameters of the scheme, an
algorithm PreProc to produce a digest from the database, an answering algorithm for the server
AnsQry, and a client algorithm VerQry.

Setup(1λ)→ (prk, vrk): is a probabilistic algorithm that takes as input the security parameter λ
and outputs a pair of keys (prk, vrk) (for proving and verification respectively).

PreProc(prk, db)→ (c, state): is a deterministic algorithm that takes in input prk, and a valid
database db. It produces a (public) commitment c and some internal state information state.

AnsQry(prk, q)→ (a, π): is a deterministic algorithm that can be invoked with a query q ∈ Q
and the setup information state as input. The corresponding output is an answer/proof pair
(a, π), where a = Q(q, db).

25 We will use this building block in our construction only for the case of sets of rows, which satisfy this
requirement. Wherever we apply sets on objects (rather than rows) we will not use the complement
as a subprotocol.

23

VerQry(V, q, a, c, π): is a deterministic algorithm that receives as input V, the commitment c, a
query q and an answer/proof pair (a, π). VerQry “accepts” or “rejects” the proof π.

Definition 8. A VDB is consistent if it is complete and sound:

– Completeness: For every valid database db and query q ∈ Q, if the setup is performed
correctly then with overwhelming probability, AnsQry outputs both the correct answer and a
proof which is accepted by VerQry. Formally, for all λ ∈ N, q ∈ Q, db s.t. ValidDB(db) = 1,
the following holds:

Pr

VerQry(V, q, a, c, π) = “accept”

∧ a = Q(q, db)
:

(prk, vrk)← Setup
(
1λ
)

(c, state)← PreProc(pp, db)

(a, π)← AnsQry(q, state)


≥ 1− negl(λ)

– (Computational) Soundness: For every PPT adversary A, run A to obtain database db,
a commitment c and a list of triples (qi, ai, πi). We say A acts consistently if ai = Q (qi, db)
for all i for which πi is a valid proof. The protocol is sound if all PPT adversaries A act
consistently. Formally, for all λ ∈ N, PPT A, the following holds:

Pr

ValidDB(db) = 1∧
∀i ∈ [t] bi = 1⇒ ai = Q (qi, db)

:

(prk, vrk)← Setup
(
1λ
)(

db, c, {(qi, ai, πi)}i∈[t])
)
← A(prk)

bi ← VerQry (vrk, qi, ai, c, πi) , i ∈ [t]


≥ 1− negl(λ)

We say that a VDB is succinct if its proof adds no overhead to the substantial overhead to
the verifier.

Definition 9 (Succinctness of a VDB). We say that a VDB is succinct if for any database
and query qry we have |π| = Oλ(|resp|+ |qry|) (where resp is a correct response to the query and
π is the proof from an honest prover) and so is the verification running time.

Above, the size of a query consists of the number of columns referenced in it (even implicitly
through a SELECT ⋆).

8 A New Information-Theoretic Model for Idealized VDB

8.1 The idealized model

In this section we present an intermediate notion of the VDB primitive described in Section 7. We
will idealize this notion a bit to make it simpler to construct and to reason about it. For example,
while the notion from Section 7 is a cryptographic one—it is secure against a computationally
bounded adversary—here we will consider an information-theoretic notion against an adversary
that is limited in other ways. This adversary will be in particular able to manipulate two basics
types of objects, sets and vectors, so that the verifier can check these manipulations without
reading the whole content of these sets and vectors. In particular the verifier will access only
pointers (“handles”) to these objects and check these requirements through them. Surprisingly, a
very limited vocabulary of core “checks” will allow a broad range of queries in an actual relational
database later. We expand on our approach in the remainder of this section and in Fig. 5.

From databases to handles. From a general perspective, a database db contains values in-
dexed via keys (e.g., primary keys in a relational table or row numbers in a spreadsheet table).
The concept of set and slice handles introduced in Section 2 are particularly apt for denoting
the data stored inside a database and for representing queries over the database. Here we briefly
recall the intuition behind the concepts of set and slice handles:

24

Idx(db)

Preprocess db and compute handles
e
X Idx

1 , 8v
Idx
1 , . . .

P(qry, resp) Vf(qry, resp)

8v
P
1 , e

XP
1 , . . . , πhint

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Using access to πhint and

e
X Idx

1 , 8v
Idx
1 , . . . ,

e
XP

1 , 8v
P
1 , . . . ,

run any of the operations in Fig. 5.

Output accept or reject.

Fig. 4: Interaction in our idealized protocols (informal). Formal details in Fig. 6.

– Given a set X of values, the set handle of X is denoted as
e
X . This kind of handle denotes

the values contained in X. Two special set handles denote the set of all row indices, written

as
e
∗ , and the empty set, written as e∅ . The handle denoting the set of all rows is kept

implicit from the context.
– Given a vector v of values, the slice handle of v is denoted as 8v . This kind of handle denote

the list of values contained in v.

The flow of an idealized VDB. At the high-level an interaction during an idealized VDB
execution proceeds as follows (see Fig. 4):

– Pre-processing : from the database we produce several sets and slices as functions of the
database, as well as their respective handles. We refer to them as database or indexing
handles; the verifier will have access to these through the next stages.

– Proving : on input a query and the database, the prover produces a set of new handles and
sends them to the verifier together with a hint, a proper string message (not a handle) whose
size will usually be sublinear in the response size and that acts as auxiliary information.

– Verifying/Retrieving : The verifier manipulates and performs checks on the handles (both
indexing and response ones) using the hint. It can also perform and retrieve information
from the slice handles (see remainder of section). It finally reconstructs the response (and
accept), or rejects.

While we focus on a non-interactive solution where the idealized prover sends a single batch of
handles/messages, our framework can be immediately extended to additional rounds. Also, if the
building blocks used to compile (see remainder of section) an idealized VDB are non-interactive,
the resulting cryptographic VDB will be non-interactive as well.

Performing tests and reads over handles. We support a small core set of tests and opera-
tions that can be performed over handles (see Fig. 5): given set handles, the verifier can check
whether one “denotes” the union/intersection of the sets corresponding to two other handles;
similarly for set containment. As for slice handles, one can test whether the inner product of the
vectors behind the two handles is equal to a given value. A test involving both types of handles
is a zero-test: does a slice handle “contains” the value 0 in the positions denoted by a set han-
dle? New slice handles may be created via homomorphic operations like summation and scalar
multiplication. From these primitive/core tests, one can derive more complex ones. In Table 3
we describe how to obtain the derived operations mentioned in Fig. 5 and others that we will
use in our final construction (and that are generally support by the core ones). The notation

e
∗ denotes the handle for the set of all rows.

Remark 2 (A note on numerical types and range checks). We assume that sets and slices are
defined over a field. Nonetheless when performing range queries or other additions we will be

25

working on bounded integers. We will make two assumptions (which are easy to instantiate and
have also been used in prior work on VDBs) that will make our approaches based on homomor-
phism work: the fact that at preprocessing time commitments to integer values are generated
honestly and will be limited to a certain range; the fact that the number of homomorphic oper-
ations required by any given query will not go beyond that range even in the worst case.

Finally, we remind the reader that given a test of the type v
?
≥ 026, it is easy, through

homomorphism, to obtain tests for v
?
≥ α (which becomes v − α · 1

?
≥ 0) and for v

?
≤ α (which

becomes −v
?
≥ −α).

Remark 3 (On security, batching and efficiency). For simplicity, we present simple instantiations
that are correct and sound by immediate inspection. Some of the instantiations will perform
redundant checks in order not to overcomplicate their description. However, it is very easy to
improve the concrete efficiency of many of these building blocks (e.g., eqSet or our range checks)
by simple batching techniques due to homomorphism and basic additional observations.

Finally, one can read values at specific positions in a slice. Notice that the Verifier actually
accesses data is through the retrieval operation. It is reasonable for retrieval to contain at least
enough information to reconstruct the response to the query. What we will show in our con-
struction is that the retrieved data may include no more than that amount of information and
still provide verifiability.

Semantics We require two properties from such an idealized protocol:

– completeness: there is always a way to use our “handle” language (the one in Fig. 5) to
convince the verifier of the correct response.

– soundness: for any supported query/database, there is no set of handles a malicious prover
can “send” to make the client accept a wrong response27.

8.2 The full formalization of idealized protocols

We now formalize the semantics of idealized VDBs.

Definition 10 (Idealized Prover/Verifier and their interaction). We denote by an ide-
alized algorithm (prover or verifier) a randomized 28 machine with access to special oracles,
described in Fig. 6 (and more informally in Fig. 4). We denote the verifier’s decision at the
end of the interaction flow (composed of local oracle invocations and a single round of message
passing) in Fig. 6 as

b←
〈
POP ,VfOVf

〉
(qry, resp)

where b ∈ {0, 1} denotes rejection or acceptance.

Remark 4. We assume all algorithms implicitly takes as input a security parameter λ. For this
idealized model this will play uniquely the role of a statistical security parameter (see Foot-
note 28). We will also implicitly assume it to be useful as offering some size bound parameter
(polynomial in λ for some fixed polynomial) to the honest algorithms (e.g., maximum size of
data structures to allocate internally, etc).

26 Here we abuse notation to denote the AND of element-wise comparison, e.g., v
?

≥ 0 tests whether all
elements in v are non-negative.

27 This is under the guarantee that all tests on these handles work as expected. This will be enforced
through cryptographic compilation in the next sections.

28 The honest idealized prover/verifier should operate in polynomial time. However, our notion of sound-
ness will be quite strong and state that the protocol is secure even against non polynomial time
machines. This is similar to what is a achieved in other idealized models such as [1, 7, 11,17,28,42].

26

Handles (oracles to sets or vectors)

e
X (set handle) 8v (“slice” handle)

Tests on sets

e
Z

?
=

e
X ∪

e
Y

e
X

?

⊆
e
Y

e
Z

?
=

e
X ∩

e
Y

Tests on slices〈
8u , 8v

〉
?
= y (inner product) 8v

[
e
X

]
?
= 0 (zero test)

New slices from homomorphism

8u ← α 8v + 8w

Reading data

data← read
(
e
X , 8v

) (
retrieves subvector (vj)j∈X

)
Some derived tests (implied by the above)

α
?

≤ 8v
?

≤ β (range check)
∑

j∈
e
X

8vj
?
= y (sum check in target subset)

e
X

?
= eqSet

(
8u , 8v

)
(tests where two slices are equal)

Fig. 5: Oracles and operations supported by the verifier in our idealized model. Only the “core” opera-
tions (above the line) are the ones we are actually assuming in the model. The remaining tests (below
the line) are implied by the core ones (with overhead independent of |db|); we stress these are just
derived operations that are useful shortcuts when describing a protocol and that the actual core model
only includes the part not in gray. We implicitly assume that if the verifier holds a set X (usually small),

this can be treated as a handle
e
X and used as such in the tests above. See Fig. 6

Completeness For all db ∈ DB, for all queries qry and responses resp s.t. SatisfiesQry (db, qry, resp) =
true, then the following holds:

Pr

[〈
POP ,VfOVf

〉
(qry, resp) = 1 :

(
Thandles

8 ,Thandles
e

)
← Idx(db)

OP,OVf as in Fig. 6

]
≥ 1− negl(λ)

Soundness For all idealized provers P̃, for all db ∈ DB, for all queries qry and responses resp
s.t. SatisfiesQry (db, qry, resp) = false, then the following holds:

Pr

[〈
P̃OP ,VfOVf

〉
(qry, resp) = 1 :

(
Thandles

8 ,Thandles
e

)
← Idx(db)

OP,OVf as in Fig. 6

]
≤ negl(λ)

8.3 From core to derived operations in idealized VDBs

We now describe how the limited sets of core operations in Fig. 5 can be used to obtain more
“complex” operations that can be useful in a verifiable database setting. By analogy, our ap-
proach is tantamount to defining a “RISC-like” set of primitive instructions (the core operations
in our model) and then deriving more complex ones as an aggregate of the former.

In producing our derived operations we use the following core techniques:

27

– homomorphism: this is often used to check whether two vectors are equal in a set of positions
by substracting them; we also apply homomorphism to produce a vector of values all equal
to the same value α by, e.g., multiplying α by the slice handle of all ones.

– complement set and “partition trick”: when checking that a property is true in a target set
X and only in that set, we let the prover send (a handle to) the set complement set X̄ and
check the property is true in X but false in X̄.

– incrementality : we occasionally use each of the new derived tests as a building blocks in
others.

The complete set of derived operations is contained in Table 3.

Nullifying test The key insight is that by checking the difference vector ∆ is zero on the
complement of the target subset X0, combined with checking that ū is zero on X0, the
verifier ensures the property without needing to explicitly compute the indicator function.
Notice that the checks correspond exactly to the property on the left and correctness and
soundness hold unconditionally.

Range check Intuitively, this test works by letting the prover send slices of bits that, when
appropriately scaled (by respective powers of two) and summed, can be seen to provide the
target slice v. The verifier can check the “bit-ness” of the received slices by having the prover
send the handle sets of positions where these slices are equal to 0; the verifier then applies
zeroing (the instruction we described in the previous bullet) in these claimed positions and
checks equality to the claimed bit slices.

Strict sign check Here we apply this observation: the subvector vX>
is positive everywhere if

and only if vX>
−1 is non-negative everywhere. We emulate the “subvectoring” operation by

nullifying anything outside X>. The verifier then applies the range check from the previous
item.

Positions where two slices are equal First observe that two slices are equal in the set of
positions X0 if and only there if and only i) if their difference is zero in X0 and ii) non-zero
everywhere else. Testing i) is straightforward (zero-testing is a core operation). To check ii)
we first let the prover “declare” what positions are non-zero and positive and which positions
are non-zero and negative. We then apply the test from the last item twice (to check that
a set of positions is strictly negative we first negate the slice through homomorphism and
then check it is strictly positive).

Sumcheck within a target subset X We let the prover send the indicator vector ofX (which
is appropriately checked by the verifier) and then we apply an inner product between slices
(a core operation).

Pre-image check Here, given a value α we want to test whether it is true that the position in
which a slice v assumes value α corresponds exactly to a claimed set of positions Xα (we
call it a preimage check because this is the preimage of the value α when seeing the slice as
a function v : [n] → F). This check will be useful in JOINs and is a natural tool in other
SQL queries. Its implementation is straightforward given one the derived check for positions
where two slices are equal: the verifier produces a slice (α, α, . . . , α) and then checks that
the latter and v assume equal values in all and only the positions in Xα.

28

Table 3: How to obtain derived operations in our model (see also Fig. 5). Above we assume that the

universe of all indices (
e
∗) and the slice comprising of all ones (81) are available to the verifier from

the indexing process. (Table continues on next page)

“Nullifying” test

8u
?
= 8v

[
e
X0 → 0

]

i.e., ∀j uj
?
= vj · (1− 1X0

(j))

Prover sends:
e
X̄0 :=

e
∗ \

e
X0

Verifier defines 8∆ ← 8u − 8v and then checks:

e
X̄0

?
=

e
∗ \

e
X0

8u

[
e
X0

]
?
= 0 (“is uj = 0 for each j ∈ X0?”)

8∆

[
e
X̄0

]
?
= 0 (“is uj = vj for each j ̸∈ X0?”)

Range check

8v
?
∈ [0, 2ℓ)

Let v
(i)
j denote the i-th bit of vj , i.e., for each j, vj =

∑
i 2

i−1v
(i)
j

Let v(i) :=
(
v
(i)
1 , . . . , v(i)m

)
for i ∈ [ℓ], with m := |v|

Let X
(i)
0 := {j : v

(i)
j = 0} for i ∈ [ℓ] (NB: v

(i)
j = 1 for all j ̸∈ X(i)

0)

Prover sends:

8v
(1) , . . . , 8v

(ℓ)

e
X

(1)
0 , . . . ,

e
X

(ℓ)
0

Verifier defines 8∆ ←
∑
i

(
2i−1

8v
(i)

)
− 8v and then checks:

8∆ [
e
∗]

?
= 0 (equivalent to

∑
i

(
2i−1v(i)

)
?
= v)

8v
(i) ?

= 81

[
e
X

(i)
0 → 0

]
for all i ∈ [ℓ] (“are these bits?”)

Strict sign check within

target subset

8v

[
e
X>

]
?
> 0

Let u1 :=
(
1X> (1), . . . ,1X> (m)

)
,

with m := |v| (indicator vector for X>)

Let uzero be such that uzero,j =

{
vj if j ∈ X>

0 if j ̸∈ X>

Prover sends:

8u1 , 8uzero ,
e
X̄> :=

e
∗ \

e
X>

Verifier defines 8v≥0 := 8uzero − 8u1 and then checks:

8u1
?
= 81

[
e
X> → 0

]
(“is this the indicator vector?”)

8uzero
?
= 8v

[
e
X̄> → 0

]
(“does this satisfy the def. of uzero?”)

8v≥0

?
≥ 0

e
X̄>

?
=

e
∗ \

e
X>

Tests where two slices are equal

e
X0

?
= eqSet

(
8u , 8v

)

i.e., we test:

X0
?
= {j : uj = vj}

Let X+ := {j : uj > vj}, X− := {j : uj < vj}.

Prover sends:
e
X+ ,

e
X−

Verifier defines 8∆ ← 8u − 8v and then checks:

That 8X0 , 8X+ , 8X− partition
e
∗ (via basic set handle tests)

8∆

[
e
X0

]
?
= 0 8∆

[
e
X+

]
?
> 0 − 8∆

[
e
X−

]
?
> 0

Sum check within target subset

∑
j∈

e
X

8vj
?
= y

Let u1 :=
(
1X(1), . . . ,1X(m)

)
, m := |v| (indicator vector for X)

Prover sends: 8u1 ,
e
X̄ :=

e
∗ \

e
X

Verifier checks:

8u1
?
= 81

[
e
X̄ → 0

]
(“is it the indicator vector?”)〈

8v , 8u1

〉
?
= y (checks actual sum)

e
X̄

?
=

e
∗ \

e
X

29

Pre-image check

e
Xα

?
= α−1(8v)

where: α−1(v) :=
{
j : vj = α

}
, α ∈ F

Verifier defines 8uα := α 81 and checks:

e
Xα

?
= eqSet(8uα , 8v)

9 Our Compilation Results

9.1 Accumulators and LVC with Zero-Testing: Definition

Below we assume a commitment scheme to vectors Setup,CommitVec and a commitment to sets
(an accumulator) Setup,Accum (the setup algorithm is the same) such that they are both binding
in their respective domains. Below, n̄ is the size of the vectors; for simplicity we assume it is
some well-defined function (a polynomial) of λ.

The property we are interested in can be thought of as an “extended” primitive of both
accumulators and (subvector-opening) vector commitments: intuitively, this primitive is such
that given cmv and accX where X ⊆ [|v|], then a prover is able to convince a verifier that
vj = 0 for all j ∈ X.

Definition 11. Formally, we say that an LVC (Section 6.3) and accumulation (Section 6.5)
scheme (jointly) support zero-testing on accumulated sets if there exist the following two efficient
algorithms satisfying the properties below (the ⋆ is just to stress that the algorithms are new and
not standard in this type of authenticated data structures):

– PrvSubvecIsZero⋆ (prk, auxv, auxX)→ π

– VfySubvecIsZero⋆ (vrk, cmv, accX , π)→ 0/1

Correctness For all λ ∈ N,v ∈ Fn̄, X ⊆ [n̄] such that vj = 0 for all j ∈ X, it holds that the
following inequality is true:

Pr

VfySubvecIsZero⋆(vrk, cmv, accX , π) = 1 :

(prk, vrk)← Setup(1λ)

(cmv, auxv)← VC.Com(prk,v)

(accX , auxX)← Acc.Com(prk, X)

π ← PrvSubvecIsZero⋆ (prk, auxv, auxX)


≥ 1− negl(λ).

Extractability For all λ ∈ N, for all PPT A there exists an efficient extractor EA such that the
following holds:

Pr


VfySubvecIsZero⋆ (vrk, cmv, accX , π) = 1∧(
accX ̸= Acc.Com(prk, X)∨
cmv ̸= VC.Com(prk,v)∨
∃j ∈ X : vj ̸= 0

) :

(prk, vrk)← Setup(1λ)

(cmv, accX , π)← A (prk)

(v, X)← EA(prk)


≤ negl(λ).

9.2 Instantiating the zero-testing property with polynomial commitments

We present a general construction based on polynomial commitments.

30

Intermezzo: LVC and accumulators from polynomial commitments Consider a linear-map vector
commitment where, in order to commit to a vector v we commit to pv(X) :=

∑
i∈[|v|] viλi(X).

Consider also an accumulator where we commit to a set S by committing to pS(X) :=
∏
s∈S(X−

s). Notice that the ADSs we described in Section 6.7 satisfy this property immediately (they
are implicitly polynomial commitments—KZG commitments in particular—to the polynomials
above).

Intermezzo: the polynomial remainder theorem as key tool Recall from standard algebra that
for any polynomial p, set S = {s1, . . . , sℓ} of size ℓ, we have that p(si) = 0 for all i ∈ [ℓ]
iff ZS(X) | p(X) where ZS(X) :=

∏
s∈S(X − s) is the vanishing polynomial in S. This is

equivalent to the existence of a polynomial q(X), such that q(X) ·ZS(X) = p(X). This suggests
the following protocol that applies standard techniques including Schwartz-Zippel to the setting
above (observing that our p of interest is pv and that the polynomial pS encoding the set is the
vanishing polynomial ZS).

A protocol for zero-testing in accumulated sets:

– To prove that v is zero in all indices in set S (for v and S respectively committed and
accumulated as above, i.e. with underlying polynomial pv :=

∑
i∈[|v|] viλi(X) and pS :=

ZS(X)): compute q(X) := pv(X)/pS(X); send polynomial commitment cmq; verifier samples
a random r; prover sends (yq := q(r), yv := pv(r), yS := pS(r), πq, πv, πS) where each π⋆ is
a polynomial evaluation proof for the respective values/polynomials (and might be batched
in principle).

– The verifier checks that yv = yq · yS and checks all polynomial evaluation proofs.

The protocol we just presented has proofs consisting of a constant number of polynomial
opening (and a constant number of field elements); it is non-interactive and extractable in the
ROM using the Fiat-Shamir heuristic if the underlying polynomial commitment is extractable
and homomorphic.

The protocol above in principle works immediately on the (vector and set) commitments we
are interested in (those described in Section 6.7). However, in the next paragraphs we will also
present another instantiation directly from pairings and without use of the random oracle.

9.3 An instantiation of zero-testing directly from pairings

The scheme we present now represent a way to perform the same checks as those in Section 9.2,
but through the “shortcuts” that pairings allow us. Recall that, in this particular case, the
commitment to v and the accumulator to S are KZG commitments, that is they are respectively
cmv := [pv(τ)]1 and accS := [pS(τ)]1 (with τ being the secret element in the setup).

– The prover computes π2,S := [pS(τ)]2 and πq := [q(τ)]1 with q(X) := pv(X)/pS(X).
– The verifier performs two checks:

– e(πq, π2,S)
?
= e(cmv, [1]2)

– e([1]1, π2,S)
?
= e(accS , [1]2)

The security of the protocol follows immediately from observations similar to those in the
proof of Theorem 2.

9.4 The actual compiler

The executed (prk, vrk) ← Setup(1λ), is the algorithm defined in Section 6.7. Notice that this
setup is used by all cryptographic tools in our system and can be reused among multiple execu-
tions.

PreProc(prk, db) is implemented as follows: for each column ui in input to PreProc com-
putes cmi ← LVC.CommitVec(prk,ui). For each set of indices Xi in input computes acci ←
SA.Accum(prk, Xi). The output (c, state) is defined as follows: c contains all the cmi computed

31

together with all the acci, state contains the additional information for the internal computation.
Notice that to have a constant size digest of db, it is possible to create a vector commitment
with LVC of all vector commitments and set accumulators.

The algorithms AnsQry(prk, q) and VerQry(V, q, a, c, π) are implicitly reported in the compiler
that can be found in Table 4.

Table 4: Compilation of idealized operations through cryptographic building blocks.

Idealized Operation Cryptographic Implementation

Produce and send new slice handle 8v Send cmv ← LVC.CommitVec(prk,v)

Produce and send new set handle
e
X Send accX ← SA.Accum(prk, X)

e
Z

?
=

e
X ∩

e
Y Prover computes

SA.OpenOp(prk, X, Y,∩)→ (Z, π).

Verifier checks

SA.VerifyOp(vrk, accZ , accX , accY ,∩, π)

e
Z

?
=

e
X ∪

e
Y Same as ∩, using ∪ operator

e
X

?

⊆
e
Y Prover computes

SA.OpenOp(prk, X, Y,⊆)→ π

Verifier checks

SA.VerifyOp(vrk, accX , accY ,⊆, π)

⟨ 8u , 8v ⟩
?
= y Prover computes

π ← LVC.OpenLin(prk,u,v, y)

Verifier checks LVC.VerifyLin(vrk, cmu, cmv, y, π)

8u ← α 8v + 8w Uses homomorphism of LVC

8v ← (v1, . . . , vn) LVC.CommitVec(prk, (v1, . . . , vn))

8u [
e
X]

?
= 0 Prover computes

π ← LVC.PrvSubvecIsZero⋆(prk,u, X)

Verifier checks
LVC.VfySubvecIsZero⋆ (vrk, cmu, accX , π)

data← read(
e
X , 8v) Prover sends X,

π ← LVC.OpenSub(prk, C,X, data)

Verifier checks

LVC.VerifySub(vrk, C,X, data, π)

accX = SA.Accum(prk, X)

32

Idx(db)

Initialize Thandles
8 := ∅ // later accessible via oracles (see below)

Initialize Thandles
e := ∅ // later accessible via oracles (see below)

[Processes db; add slice (resp. set) handles to Thandles
8 (resp.Thandles

e)]

Return
(
Thandles

8 ,Thandles
e

)
POP(qry, resp) VfOVf (qry, resp)

[Calls to OnewHandle]

[Compute πhint]

πhint
−−−−−−−−−−−−−−−−−−−−−−→

[Calls to OfromHom]

[Calls to Otest]

[Calls to Oread]

[Decide using:(
pp, output from Oread

πhint, qry, resp
)

]

OP :=
{
Thandles

8 ,Thandles
e

, db,OnewHandle(·)
}

OVf :=
{
OfromHom(·),Otest(·),Oread(·)

}
OnewHandle(tag, val)

If tag ∈ Thandles
e

∪ Thandles
8 :

output ⊥
If val is a set of elements in F:

Thandles
e

[tag]← val

If val ∈ Fn:

Thandles
8 [tag]← val

Else output ⊥

OfromHom (tag′, α, tagu, β, tagv)

If tag′ ∈ Thandles
8 :

output ⊥
u← Thandles

8 [tagu]

v ← Thandles
8 [tagv]

Thandles
8 [tag′]← αu+ βv

Otest(testInput)

(Performs any of the tests in Fig. 5 in the natural way,

e.g., retrieve slices/set values; check the related property)

If testInput =
(
“⊆”, tagX , tagY

)
:

X := Thandles
e

[tagX];Y := Thandles
e

[tagY]

Return 1 if X ⊆ Y ; o.w. return 0.

If testInput = . . . (other cases as by Fig. 5)

Oread(tagv, tagX)

v := Thandles
8 [tagv]

X := Thandles
e

[tagX]

Return (vj)j∈X

Fig. 6: Formal details for the idealized protocol interaction. We assume that any of the oracles returns ⊥
whenever trying to access a non-existing tag in the tables. Notice that, by placing them among its oracles,
the prover has RAM access to db and the preindexed tables Thandles

8 and Thandles
e

. The implementation

of Otest is straightforward and above we just provide an example that is immediate to extend.

33

9.5 Instantiating our compiler

Here we describe our formal results. The results follows immediately and their proofs follow the
common proofs in compilers of this type (e.g., [17, 28]);

Remark 5 (On security requirements of the underlying building blocks). While we require ex-
tractability as a form of security for our underlying primitives, we do not believe this require-
ment to be necessary because of the reliance on at least some honestly computed commitments.
This may allow us to rely on some form of less strong evaluation binding. We choose to describe
our framework in terms of extractability because it makes extremely easy (almost immediate)
to prove security of our compilers. Moreover, the extractability properties of KZG—essentially,
our core instantiation—have been widely discussed in literature. We leave as future work to a
more fine-grained security treatment of our framework.

An instantiation from (augmented) vector commitments & accumulators

Theorem 6. Let ΠLVC and ΠAcc be respectively:

– an homomorphic linear-map vector commitment scheme (Section 6.3) with subvector opening
(Section 6.4);

– an accumulator with set relation opening (Section 6.5).

Let ΠLVC and ΠAcc also jointly support zero-testing in accumulated sets (defined on page 30).
Then our compiler (page 31 and Table 4) on input a succinct idealized VDB (Section 7) produces
a succinct VDB (Definition 7, Definition 8 and Definition 9) supporting the same family of
queries.

Proof. Let V be a succinct idealized VDB as described in Section 7, the protocol V ′ obtained
by the compiler described in Section 9.4 on input V is a succinct VDB:

Completeness: Intuitively, completeness follows from the completeness of the underlying cryp-
tographic tools. In particular each set handle

e
X is compiled in a set accumulator containing

X and each slice handle 8v is compiled in a vector commitment. Every test on set operations

is complete for the completeness of the opening operations of set accumulators. The inner
product completeness holds for the LVC correctness. The zero test correctness follows from
the correctness of the zero-testing in accumulated sets. The new slices from homomorphisms
are complete due to homomorphic properties of the LVC commitment. The completeness
of the derived operations in Table 3 follows from the correctness of these basic compiled
operations.

Soundness: Soundness follows from the extractability of the cryptographic schemes. Since the
analysis is extremely standard (e.g., same as in similar compiler approaches as in [17,28]) we

simply provide an intuition. Each proof in the idealize VDB is of the form 8v
P
1 , eX

P
1 , . . . , πhint.

We assume this proof is correctly computed while the compiled proof does not satisfy the
computational soundness of VDB, i.e., the verification of the proof returns 1 but the re-
sponse is not correct given the committed database. Let A be the adversary that breaks
the soundness (Definition 8) with probability greater than negligible. By invoking the ex-
tractability of the underlying building block we are able to extract the committed values from

8v
P
1 , eX

P
1 , . . . sent at proving time (the preprocessing handles are generated honestly and

we can directly point to the respective commitment openings in the reduction). That is, we
can use the LVC extractors for each slice handle and the set accumulator extractor for each
set handle. By the security of the underlying idealized protocol, it holds that the extracted
values justify the response with overwhelming probability contradicting the hypothesis that
A can break the soundness.

Succinctness: This follows immediately by inspection: a succinct transcript from an idealized
VDB is compiled into a tuple of vector commitments, set accumulator and respective proofs
of the same size up to a Oλ(1) factor.

34

A general instantiation from homomorphic polynomial commitments When we dis-
cussed how to build zero-testing on page 30, we hinted at a connection between polynomials and
vector/set commitments. This connection goes beyond zero-testing and can be show to gener-
alize quite easily to the other properties we require in Section 7. To prove the theorem below
all we need is to show that we can obtain the ingredients of Theorem 6 from any polynomial
commitment scheme because we can generalize the constructions in the last subsection. This
can be observed by inspecting a generalized version of common constructions (Section 6.7) and
observing the same type of patterns we noticed on page 30. (This holds in particular for the
specific pairing-based building blocks described in Section 6.7, which can be easily satisfy the
requirements of Theorem 6. We will apply this observation in the next section and in Corollary 1).

Theorem 7. Let Πpc be an homomorphic extractable polynomial commitment scheme. Then our
compiler on input a succinct idealized VDB (Section 8) produces a succinct VDB (Section 9)
supporting the same family of queries in the random oracle model (ROM).

Proof. We have to show that all the operations guaranteed by ΠLVC and ΠAcc are implied by
any Πpc.

Therefore, we can show how to perform each operation of ΠLVC and ΠAcc using polynomial
evaluations. For ΠLVC :

– For the operations OpenLin(prk,u,v, y) and VerifyLin(vrk, cmu, cmv, y, π), the prover and the
verifier interact as follows: the verifier receives from the prover the commitments cmu, cmv,
cmR(X), cmH(X), cmR̂(X) such that R̂(X) = X2R(X), deg(R) < n̄− 1 and(

n̄∑
i=1

uiλi(X)

)(
n̄∑
i=1

viλi(X)

)
− n̄−1y = XR(X) + t(X)H(X). (1)

The verifier sends a random value k to the prover. The prover sends πϕj ← OpenPos(prk, ϕj(k), k, d),

where ϕj ∈ {u,v, R(X), H(X), R̂(X)}. The verifier checks that VerifyPos(vrk, cmj , k, ϕ(k), πϕj
) =

1 for all cmj ∈ {cmu, cmv, cmR(X), cmH(X), cmR̂(X)} and evaluates Eq. (1) at X = k. If the

opening proofs are valid, the equations R̂(k)− k2R(k) = 0 and Eq. (1) hold, the Schwartz-
Zippel lemma guarantees that the proof holds.

– OpenSub(prk, auxu, I) and VerifySub(vrk, cmu,v, I, π) can be computed using the same strat-
egy of OpenLin(prk,u,v, y) and VerifyLin(vrk, cmu, cmv, y, π).

For the set accumulator, the fact that we can construct them from polynomial commitments
has already been shown in Section 6.7. The zero-testing in accumulated sets follows the blueprint
described in Section 9.2. To make the protocol non interactive the prover can use the Fiat-Shamir
heuristic producing the challenges using a RO. ⊓⊔

Remark 6 (Implication: post-quantum VDBs (for free!)). An implication of our work and specif-
ically of Theorem 7 is that we can plug in any extractable homomorphic polynomial commitment
and obtain a construction of verifiable databases. For example, using the polynomial commitment
based on standard lattice assumptions from [48] to immediately obtain a plausibly post-quantum
secure VDB construction29.

10 Our Final Construction: qedb

Here we first describe our construction in terms of the operations—core and derived (see Fig. 1)—
for our idealized protocol. Our final construction follows from compiling and optimizing it our
idealized VDB construction.

We now list few relevant queries that are expressible in our intermediate (idealized) repre-
sentation formalism.

29 The resulting construction has superconstant overhead for the verifier and proof size unlike the one
in this work.

35

Simple selection queries. We provide some examples of simple queries over tabular data. We
start considering a single table T composed of several columns col1, col2, . . . , colu.

The simplest query returns some column from T, without any selection condition (in this
case the prover does not have to check any selection condition):

Q1 : SELECT col1, col2 FROMT (2)

Pre-processing: The Data Owner defines slice handles 8col1 , 8col2

Proof computation: Prover does nothing
Proof verification: Verifier retrieves the data in columns col1, col2 with read(

e
∗ ,

8col1) and read(
e
∗ , 8col2).

Completeness holds since the verifier collects the handles 8col1 and 8col2 to col1 and col2

from Thandles
8 and read(

e
∗ , 8col1) and read(

e
∗ , 8col2) return exactly what prescribed by the

calls to Oread(8col1 , e∗) and Oread(8col2 , e∗). Soundness holds since the verifier is not tak-

ing anything from the prover and only computes read(
e
∗ , 8col1) and read(

e
∗ , 8col2). These

commands return exactly the values contained in col1 and col2, therefore SatisfiesQry (db, qry, resp) =
true.

The following query contains an equality-based selection condition:

Q2 : SELECT col1 FROMTWHERE col2 = u (3)

Pre-processing: we assume that the Data Owner knows the set V to which the value u belongs to.
The Data Owner computes the slice handle 8col1 ; then it computes an inverted index associated

to the set V: (i) for all the values of V appearing in col2, take note of all their positions in such
column; (ii) compute set handles of such lists of positions. More formally, for each v ∈ V define

the inverted index Xv = {j : col2[j] = v}. Then, define the set handle
e
Xv .

Proof computation: As in the previous query, the Prover does nothing
Proof verification: The Verifier picks

e
Xu and outputs read(

e
Xu , 8col1).

Completeness holds since the verifier collects the handles 8col1 to col1 from Thandles
8 and

e
u

from Thandles
e

, therefore the verifier computes read(
e
u , 8col1) that returns exactly the positions

in col1 where col2 = u that is what prescribed by the calls to Oread(8col1 , eu). Soundness holds

since the verifier is not taking anything from the prover and only computes read(
e
u , 8col1).

This command returns exactly the values contained in col1 required by the query, therefore
SatisfiesQry (db, qry, resp) = true.

Range queries and conjunctive queries. Consider the following range query:

Q3 : SELECT col1 FROMTWHERE col2 ∈ [α, β] (4)

Pre-processing: as before.
To show that Xin is the set of all indices j such that α ≤ v[j] ≤ β, prover and verifier execute
the following steps (we have renamed col2 as v):

– prover sends
e
Xout

– verifier checks it is as claimed
// check that all the values indexed by Xin are in the range:
– prover sends 8u1 , where u1 is equal to 1 for each index in Xin and 0 elsewhere

– verifier checks that 8u1
?
= 81

[
e
Xout → 0

]
– let u≥α := v − αu1

36

– let u≤β := βu1 − v
– prover and verifier run the protocol to check that 8u≥α ≥ 0

– prover and verifier run the protocol to check that 8u≤β ≥ 0

// check that no value out of those indexed by Xin is in the range:

– prover sends two additional set handles
e
X<α ,

e
X>β

– verifier checks that
e
Xin , eX<α ,

e
X>β form a partition of

e
Xout

– let u< := αu1 − v
– let u> := v − βu1
– prover and verifier run the protocol to check that 8u< [

e
X<α] ≥ 0

– prover and verifier run the protocol to check that 8u> [
e
X>β] ≥ 0

– verifier performs read(8Xin , ecol1)

Completeness holds since for each response that is correct, thanks to the correctness of
the underlying scheme, the prover can correctly show that elements indexed in Xin are in the
range, while the others values are outside the range. Let us assume that soundness does not
hold, therefore there is a prover that generates accepting proof for a response resp such that
SatisfiesQry (db, qry, resp) = false. Let πα, πβ , π<, π> the proofs of – respectively – the chosen
values in mathcol2 are contained in the range [α, beta], and no other values have been chosen.
Since πα guarantees that all the element in col2 in positions contained in Xin are greater or
equal to α, πβ guarantees that that values are also lower than or equal to β. The first verifier
check guarantees that there is no intersection among the two sets Xin and Xout. The proof π<
guarantees that the elements in X< are all small than α while π> shows that elements in X> are
all greater than β. Therefore read(8Xin , ecol1) is equal to resp and SatisfiesQry (db, qry, resp) =

true.
As for general conjunctive query, consider the query:

Q4 : SELECT col1 FROMTWHERETest1(col2)ANDTest2(col2) (5)

Pre-processing: as before.
Proof computation: the Prover computes the set handles

e
XTest1 ,

e
XTest2 and sends them

to the Verifier.
Proof Verification: the Verifier performs the following steps:

– after renaming the set handles received from the Prover to
e
Xin,1 ,

e
Xin,2 respectively,

define the set handle
e
Xin,∧ =

e
Xin,1 ∩ e

Xin,2

– output read(
e
Xin,∧ , 8col1)

Completeness follows from the the fact that Test1(col2)ANDTest2(col2) will return the cor-

rect set handles
e
XTest1 and

e
XTest2 . Indeed the verifier can correctly compute

e
XTest1 ∪

e
XTest2 . Since the only data sent by the prover are

e
XTest1 and

e
XTest2 , we assume that

there exists an adversarial prover that is able to return values
e
XTest1 and

e
XTest2 such that

the intersection among these indexes contains wrong elements. Let
e
XTest1 and

e
XTest2 be

correct values for the soundness of Test1(col2) and Test2(col2). Since the read is computing the

elements obtained by the intersection of
e
XTest1 and

e
XTest2 and the intersection algorithm

is sound, it holds that SatisfiesQry (db, qry, resp) = true.

Join queries. Consider tables T1, T2 with respective columns named pk, col1 and fk, col2.
As their names suggest pk is primary key of table T1, and fk is a foreign key in T2 referencing
values from pk. Consider the query:

37

Q5 : SELECT ∗ FROMT1 JOINT2 ON pk = fk (6)

Pre-processing: as before.

Proof computation: the Prover performs the following steps:

– retrieves the set handle
e
fk referring the inverse lookup {j : fk[j] = v}, for each v ∈ Vpk.

– retrieves the set handle
e
pk referring the inverse lookup {j : pk[j] = v}, for each v ∈ Vfk.

The Prover sends
e
pk ,

e
fk to the Verifier.

Proof verification: The Verifier performs the following steps:

– compute p̂k ← read(
e
pk , 8pk)

– compute f̂k ← read(
e
fk , 8fk)

– check that f̂k = p̂k

– r̂st1 ← read(
e
pk , 8T1.rst)

– compute r̂st2 ← read(
e
fk , 8T2.rst)

Subsequently, the Verifier concatenates the data retrieved in p̂k, r̂st1 and r̂st2. To prove that
the query result contains all the valid tuples, prover and verifier engage in a protocol similar to
the second part of the one defined for Query .

To join two tables T and T’ on equality on column C with duplicates in both tables, we do
the following:

Invariant (initially enforced through indexing):

– For each table T and column C we keep a set of values V (T,C) in that column

Observation: let V∩ := V (T,C) ∩ V (T ′, C) = {α1, . . . , αℓ}, the JOIN will be given by the
cross product of the rows from each table as follows:

α−1i (T.C)× α−1i (T ′.C) for i = 1, . . . , ℓ

where recall that α−1(v) := {j : vj = α} denotes the set of preimages of the value α in the
vector v.

Our protocol is then as follows:

– the prover sends V∩ as defined above to the verifier (in the clear—this is not a handle)

– it also sends for each α ∈ V∩, the respective preimage set (as a handle) in each table. I.e., it

sends
e
Xα,col := α−1(col) for col ∈ {T.C, T ′.C} and α ∈ V∩.

– Then, for each 8col ∈ { 8T.C , 8T
′.C } and α ∈ V∩, the prover and verifier run a sub-protocol

Xα,col
?
= α−1(8col).

– They also run a sub-protocol to show
e
V∩

?
= eV (T,C) ∩ eV (T ′, C) (recall that the last

two handles are already held by the verifier as handles from the invariant).

– Finally the verifier run read(
⋃
α e

Xα,T.C , 8T.⋆) and read(
⋃
α e

Xα,T′.C , 8T
′.⋆) (i.e., it

reads any column selected for the JOIN) and performs the cartesian product appropriately.

The protocol above directly extends to multi-way JOINs.

38

Aggregate queries. We now present the protocols for min, sum, count, and average queries.

– MIN query: consider the query:

Q6 : SELECTMIN(coltgt)FROMT (7)

Pre-processing: we assume that the Verifier has the slice handle 8tgt corresponding to coltgt.

Proof computation: the Prover does as follows:
– compute the set of positions argmin(tgt) in coltgt of the minimum values: argmin(tgt) =
{j : coltgt[j] ≤ v for all v ∈ coltgt} (here we denote with coltgt[j] the j-th element in the

slice referred by 8tgt .

– compute
e
Xargmin and sends it to the Verifier

Proof verification: the Verifier performs the following steps:
– get

e
Xargmin

– retrieve vmin ← read(
e
Xargmin , 8tgt)

– define 8tgt
′ = 8tgt − 8(vmin, . . . , vmin)

– check that every value in the slice handle 8tgt
′ lies in the interval [0, 2l)

Completeness follows from the fact that
e
Xargmin actually contains only the indices with

the minimum value in the column (it can contain more than one element if the minimum

is repeated multiple times). Therefore vmin ← read(
e
Xargmin , 8tgt) outputs a vector con-

taining only the minimum value in the column coltgt. The correctness is also enforced by the
range proof proving that after removing from coltgt the vector vmin[0]u1, where u1 is the
slice comprising of all ones, it is contained in the range [0, 2ℓ) meaning that these values are

all greater than vmin[0]. The adversarial prover sends e
Xargmin , therefore if the verification

returns 1 while SatisfiesQry (db, qry, resp) = false, it means that
e
Xargmin are not the in-

dexes containing the minimum value. If this is the case, the range proof fails since there is at

least a value in 8tgt
′ that is less then 0, since the range proof is sound it can happen only

with negligible probability.
The protocol for max is a trivial adaptation of the above.

– SUM query: consider the query:

Q7 : SELECTSUM(coltgt)FROMT (8)

Pre-processing: as before.
Proof computation:
– the Prover computes the set handle

e
∗ corresponding to the rows of T and the value

stgt =
∑

v∈coltgt
v

– The Prover sends
e
∗ and stgt to the Verifier

Proof Verification:
– the Verifier gets

e
∗ and stgt from the Prover

– the Verifier checks that
∑
e
∗

8tgt is equal to stgt

Completeness follows from the correctness of the sum check within target subset operation,
indeed the prover is sending

e
∗ together with u1, I.e., the vector that contains all ones, the

verifier checks that u1 is actually one in all positions and then performs the inner product
between coltgt and u1 checking if it is equal to the response. To prove soundness let us
assume that there exists an adversarial prover that will cause the verifier to return 1 but
such that SatisfiesQry (db, qry, resp) = false. Therefore resp does not contain the sum of the
elements in coltgt. The probability that it happens is negligible indeed the verifier can check
that u1 is a vector of all ones, that

e
∗ is indeed a set handle to all indices and that the the

inner product of the two handles is actually the expected sum.

39

– COUNT query: consider the query:

Q8 : SELECTCOUNT(coltgt)FROMT (9)

Pre-processing: as before.
Proof computation:
– the Prover computes the set handle

e
∗ referring to all rows of T

– the Prover sends
e
∗ and the value n to the Verifier

Proof Verification: The Verifier performs the following steps:
– get

e
∗ and the value n from the Prover,

– define slice handle 8ones ← (1, . . . , 1︸ ︷︷ ︸
n

)

– check that
∑
e
∗

8ones is equal to n

Completeness and soundness discussion are equal to the one done for Q8.

Nested queries. Consider the query:

Q9 : SELECT col1 FROMT1 WHERE col2 IN

(SELECT col3 FROMT2 WHERE col4 = u)
(10)

Pre-processing: as before.
Proof computation: Prover sends to Verifier the following set handles:

e
col1u (the entry of set

handle
e
col4 corresponding to value v) and

e
col2v1 , ecol2v2 , . . . , ecol2vn , that are the set

handles entries in
e
col2 of the values {v1, v2, . . . , vn} contained in the answer to the sub-query

SELECT col3 FROMT2 WHERE col4 = u.
Proof verification: Verifier creates the new set handle

e
col2OR

equal to
e
col2v1 ∪ e

col2v2 ∪· · ·∪

e
col2vn ; finally, Verifier retrieves the answer of the nested query via read(

e
col2OR

, 8col4).

Again, to prove that the query result contains all the valid tuples, prover and verifier engage
in a protocol similar to the second part of the one defined for Query . In general, we can handle
nested queries through techniques analogous to those in [85] but without having to rely on a
preprocessing containing auxiliary info on every possible pair of columns in the same table (which
leads to its quadratic blowup).

Group by queries. Consider the query, where the condition on agg(coltgt) can be any aggre-
gation expression.

Q10 : SELECT col1, agg(coltgt)FROMT1 GROUPBY col1 (11)

Pre-processing: We assume that the Verifier has the slice handle 8tgt corresponding to coltgt

together with the set handles for column col1.
Proof computation: the Prover performs the following steps:

– select the elements set {α1, . . . , αn} in col1 corresponding to the indices in Xcol2

– given the values {α1, . . . , αn} in col1, compute the sets of indices X1, . . ., Xn where Xi =
{j : col1[j] = αi}

– compute the aggregations a1, . . ., an on coltgt on indices X1, . . ., Xn

– send
e
X1 , . . . , eXn to the Verifier

– the Prover and the Verifier run a sub-protocol to prove that
e
X1 ∪ . . . ∪ e

Xn =
e
∗

– the Verifier checks that each
e
Xi is contained in the set accumulator for column col1

40

– the Prover and the Verifier run a sub-protocol to prove that each aggregation ai, for i ∈ [n]

is correct in 8tgt under the indices
e
Xi .

Let us assume that completeness does not hold, in this case either the prover did not send
a pair (αj , aj) or there exists at least a value αj ∈ {α1, . . . , αn} such that the aggregator is
not aggregating all values. In the first case it implies that X1, . . ., Xn is not a partition of ∗
(i.e., proving that each Xi is in a set handle for col1 and that the union of all Xi is equal to

e
∗) that is a contradiction. The second case implies that the aggregation proof is not complete

statement that is a contradiction. Let us assume that soundness does not hold. In this case,
either in (αj , aj), aj does not correspond to the indices in Xj or there exists an αj such that
is not in the positions Xcol2 . The first case contradicts the soundness of the aggregation proof.
The second case instead violates one of the checks performed by the Verifier in the containment
of

e
Xi in the set accumulator for column col1.

Other queries. Our construction takes into account queries that contain predicates and ex-
pressions involving two or more columns. Consider the query:

Q11 : SELECT c1 FROMT WHERE c2 ≥ 2c3 + c4 (12)

This can be handled immediately thanks to the homomorphic properties of our framework
(for simplicity here we omit the usual color coding for handles). For example, in the above the
prover can first homomorphically compute a “virtual” column (a slice) c′ := c2 − 2c3 − c4 (and
so can the verifier) and then provide a set handle of rows in which such a column would have a
value greater than 0 (as we did for the simple case of range queries). The verifier can then read
that set from c1. Completeness and soundness discussion are equal to the one done for Q3.

Similarly, our system can handles queries that involve, e.g., SELECT 3c1 + c5 WHERE
Here the prover and verifier can produce a new column c′ (in this case c′ := 3c1 + c5). The read
will occur on this specific column. For more details on homomorphisms in our framework we also
refer the reader to Remark 2.

Putting it all together: VDBs from pairing techniques (and essentially KZG) We
instantiate our compiler using the building blocks described in Section 6.7 and on page 30 and
combining it with the construction in this section:

Corollary 1. There exists a succinct verifiable DB with the efficiency metrics in Table 1 (last
row) supporting the set of queries in Fig. 1 whose setup is the standard KZG setup.

Acknowledgments and disclosure

Matteo Campanelli would like to thank Nicola Greco who, around 2022, first suggested verifiable
databases as an interesting topic to work on. Matteo has no financial interest in Provably Tech-
nologies and has pursued this research work on a voluntary basis, motivated by the potential
relevance to the cryptographic proofs community.

This work was supported (for Simone Bottoni and Alberto Trombetta) in part by project
SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU. Views and
opinions expressed are however those of the authors only and do not necessarily reflect those of
the European Union or the Italian MUR. Neither the European Union nor the Italian MUR can
be held responsible for them.

References

1. D. F. Aranha, E. M. Bennedsen, M. Campanelli, C. Ganesh, C. Orlandi, and A. Takahashi. Eclipse:
Enhanced compiling method for pedersen-committed zksnark engines. In IACR International Con-
ference on Public-Key Cryptography, pages 584–614. Springer, 2022.

41

2. arkworks contributors. arkworks zksnark ecosystem, 2022.
3. A. Arun, S. T. V. Setty, and J. Thaler. Jolt: Snarks for virtual machines via lookups. In Advances

in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, 2024.

4. Axiom. Axiom openvm, 2025. https://www.axiom.xyz/.
5. E. Ben-Sasson, A. Chiesa, and N. Spooner. Interactive oracle proofs. In Theory of Cryptography: 14th

International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings,
Part II 14, pages 31–60. Springer, 2016.

6. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and E. Tromer. The
hunting of the snark. Journal of Cryptology, 30(4):989–1066, 2017.

7. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from dark compilers. In Advances in
Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39, pages
677–706. Springer, 2020.

8. B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. Proofs for inner pairing products and
applications. Cryptology ePrint Archive, Paper 2019/1177, 2019.

9. M. Campanelli, F. Engelmann, and C. Orlandi. Zero-knowledge for homomorphic key-value com-
mitments with applications to privacy-preserving ledgers. In International Conference on Security
and Cryptography for Networks, pages 761–784. Springer, 2022.

10. M. Campanelli, A. Faonio, D. Fiore, T. Li, and H. Lipmaa. Lookup arguments: Improvements,
extensions and applications to zero-knowledge decision trees. In Public-Key Cryptography - PKC
2024 - 27th IACR International Conference on Practice and Theory of Public-Key Cryptography,
2024.

11. M. Campanelli, A. Faonio, D. Fiore, A. Querol, and H. Rodŕıguez. Lunar: A toolbox for more efficient
universal and updatable zksnarks and commit-and-prove extensions. In Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryptology
and Information Security, Singapore, December 6-10, 2021, Proceedings, Part III, 2021.

12. M. Campanelli, A. Faonio, and L. Russo. Snarks for virtual machines are non-malleable. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 153–
183. Springer, 2025.

13. M. Campanelli, D. Fiore, and R. Gennaro. Natively compatible super-efficient lookup arguments
and how to apply them. Journal of Cryptology, 38(1):14, 2025.

14. M. Campanelli, D. Fiore, S. Han, J. Kim, D. Kolonelos, and H. Oh. Succinct zero-knowledge batch
proofs for set accumulators. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 455–469, 2022.

15. M. Campanelli, D. Fiore, and H. Khoshakhlagh. Witness encryption for succinct functional com-
mitments and applications. In Public-Key Cryptography - PKC 2024 - 27th IACR International
Conference on Practice and Theory of Public-Key Cryptography, Sydney, Australia, April 15-17,
2024, Proceedings, Part II, volume 14602 of Lecture Notes in Computer Science, pages 132–167.
Springer, 2024.

16. M. Campanelli, D. Fiore, and M. Pancholi. When can we incrementally prove computations of
arbitrary depth? Cryptology ePrint Archive, 2025.

17. M. Campanelli and M. Hall-Andersen. Fully succinct arguments over the integers from first princi-
ples. Cryptology ePrint Archive, Paper 2024/1548, 2024.

18. M. Campanelli and M. Hall-Andersen. Fully succinct arguments over the integers from first princi-
ples. Cryptology ePrint Archive, Paper 2024/1548, 2024.

19. M. Campanelli, M. Hall-Andersen, and S. H. Kamp. Curve trees: Practical and transparent {Zero-
Knowledge} accumulators. In 32nd USENIX Security Symposium (USENIX Security 23), pages
4391–4408, 2023.

20. M. Campanelli, M. Hall-Andersen, and S. H. Kamp. Curve forests: Transparent zero-knowledge set
membership with batching and strong security. Cryptology ePrint Archive, 2024.

21. M. Campanelli, A. Nitulescu, C. Ràfols, A. Zacharakis, and A. Zapico. Linear-map vector com-
mitments and their practical applications. In Advances in Cryptology - ASIACRYPT 2022 - 28th
International Conference on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5-9, 2022, 2022.

22. D. Catalano and D. Fiore. Vector commitments and their applications. In Public-Key Cryptography
- PKC 2013 - 16th International Conference on Practice and Theory in Public-Key Cryptography,
Nara, Japan, February 26 - March 1, 2013, 2013.

23. D. Catalano and D. Fiore. Vector commitments and their applications. In T. Johansson and P. Q.
Nguyen, editors, Public-Key Cryptography – PKC 2013, 16th International Conference on Practice
and Theory in Public-Key Cryptography, Nara, Japan, February 26 – March 1, 2013. Proceedings,
volume 7778 of Lecture Notes in Computer Science, pages 55–72. Springer, 2013.

42

24. D. Catalano, D. Fiore, and I. Tucker. Additive-homomorphic functional commitments and appli-
cations to homomorphic signatures. In S. Agrawal and D. Lin, editors, Advances in Cryptology -
ASIACRYPT 2022 - 28th International Conference on the Theory and Application of Cryptology
and Information Security, Taipei, Taiwan, December 5-9, 2022, Proceedings, Part IV, volume 13794
of Lecture Notes in Computer Science, pages 159–188. Springer, 2022.

25. M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin. Mercurial commitments with appli-
cations to zero-knowledge sets. In R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings. Springer, 2005.

26. B. Chen, B. Bünz, D. Boneh, and Z. Zhang. Hyperplonk: Plonk with linear-time prover and high-
degree custom gates. In Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27,
2023, Proceedings, Part II, 2023.

27. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward. Marlin: Preprocessing zkSNARKs
with universal and updatable SRS. Cryptology ePrint Archive, Paper 2019/1047, 2019.

28. A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. Marlin: Preprocessing zksnarks
with universal and updatable SRS. In Advances in Cryptology - EUROCRYPT 2020 - 39th An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part I, 2020.

29. I. Chowdhury and M. Zulkernine. Using complexity, coupling, and cohesion metrics as early indica-
tors of vulnerabilities. Journal of Systems Architecture, 57(3):294–313, 2011.

30. E. Commission. Data act explained, 2025.
31. G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming

interactive proofs. In S. Goldwasser, editor, Innovations in Theoretical Computer Science 2012,
Cambridge, MA, USA, January 8-10, 2012, pages 90–112. ACM, 2012.

32. T. P. P. Council. Tpc benchmark h standard specification. Technical report, Transaction Processing
Performance Council (TPC), 2022.

33. Q. Dao, J. Miller, O. Wright, and P. Grubbs. Weak fiat-shamir attacks on modern proof systems.
In 2023 IEEE Symposium on Security and Privacy (SP), pages 199–216. IEEE, 2023.

34. L. de Castro and C. Peikert. Functional commitments for all functions, with transparent setup
and from SIS. In C. Hazay and M. Stam, editors, Advances in Cryptology - EUROCRYPT 2023 -
42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Lyon, France, April 23-27, 2023, Proceedings, Part III, volume 14006 of Lecture Notes in Computer
Science, pages 287–320. Springer, 2023.

35. Deloitte. It’s time to reprioritize bcbs239 compliance, 2023.
36. S. Dittmer, Y. Ishai, and R. Ostrovsky. Line-point zero knowledge and its applications. IACR

Cryptol. ePrint Arch., page 1446, 2020.
37. Ethereum. Powers of tau specification, 2022.
38. B. for International Settlements. Principles for effective riskdata aggregation and risk reporting.

BIS report BCBS239, 2013.
39. W. E. Forum. Data integrity (blockchain toolkit), 2025.
40. G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its applications. In Advances

in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part II, 2018.

41. A. Gabizon and Z. J. Williamson. plookup: A simplified polynomial protocol for lookup tables.
Cryptology ePrint Archive, 2020.

42. A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. IACR Cryptol. ePrint Arch., page 953, 2019.

43. S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: Interactive proofs for
muggles. J. ACM, 62(4):27:1–27:64, 2015.

44. B. Gu, J. Fang, and F. Nawab. PoneglyphDB: Efficient non-interactive zero-knowledge proofs for
arbitrary SQL-query verification. Proc. ACM Manag. Data, 3(1):63:1–63:27, 2025.

45. F. Guo, Y. Mu, and Z. Chen. Identity-based encryption: How to decrypt multiple ciphertexts using
a single decryption key. In International Conference on Pairing-Based Cryptography, pages 392–406.
Springer, 2007.

46. Hacken. https://hacken.io/discover/blockchain-oracles/, 2025.
47. HSBC. Form 20-f, 2025.
48. I. Hwang, J. Seo, and Y. Song. Concretely efficient lattice-based polynomial commitment from

standard assumptions. In Annual International Cryptology Conference, pages 414–448. Springer,
2024.

49. IntegriDB. Integridb code repository. https://github.com/integridb/Code.

43

50. Y. Ishai. Zero knowledge proofs from information-theoretic proof systems i, 2025.
https://zkproof.org/2020/08/12/information-theoretic-proof-systems/.

51. JPMorganChase. Form 10-k, 2024.
52. A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to polynomials and their

applications. In Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on
the Theory and Application of Cryptology and Information Security, Singapore, 2010.

53. D. Khovratovich, R. D. Rothblum, and L. Soukhanov. How to prove false statements: Practical
attacks on fiat-shamir. IACR Cryptol. ePrint Arch., 2025.

54. D. Khovratovich, R. D. Rothblum, and L. Soukhanov. How to prove false statements: Practical
attacks on fiat-shamir. Cryptology ePrint Archive, Paper 2025/118, 2025.

55. L. Labs. Zk co-processor, 2025. https://www.lagrange.dev/zk-coprocessor.
56. R. W. F. Lai and G. Malavolta. Subvector commitments with application to succinct arguments. In

A. Boldyreva and D. Micciancio, editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings,
Part I, volume 11692 of Lecture Notes in Computer Science, pages 530–560. Springer, 2019.

57. J. Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial com-
mitments. IACR Cryptol. ePrint Arch., page 1274, 2020.

58. F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated index structures for
outsourced databases. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, Chicago, Illinois, USA, June 27-29, 2006, pages 121–132. ACM, 2006.

59. X. Li, C. Weng, Y. Xu, X. Wang, and J. Rogers. ZKSQL: verifiable and efficient query evaluation
with zero-knowledge proofs. Proc. VLDB Endow., 16(8), 2023.

60. B. Libert, K. Nguyen, B. H. M. Tan, and H. Wang. Zero-knowledge elementary databases with
more expressive queries. In D. Lin and K. Sako, editors, Public-Key Cryptography - PKC 2019 -
22nd IACR International Conference on Practice and Theory of Public-Key Cryptography, Beijing,
China, April 14-17, 2019, Proceedings, Part I, Lecture Notes in Computer Science. Springer, 2019.

61. B. Libert, S. C. Ramanna, and M. Yung. Functional commitment schemes: From polynomial com-
mitments to pairing-based accumulators from simple assumptions. In 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, Proceed-
ings, 2016.

62. B. Libert and M. Yung. Concise mercurial vector commitments and independent zero-knowledge
sets with short proofs. In D. Micciancio, editor, Theory of Cryptography, 7th Theory of Cryptogra-
phy Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, volume 5978 of
Lecture Notes in Computer Science, pages 499–517. Springer, 2010.

63. S. Micali, M. O. Rabin, and J. Kilian. Zero-knowledge sets. In 44th Symposium on Foundations
of Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings. IEEE
Computer Society, 2003.

64. A. Miller, M. Hicks, J. Katz, and E. Shi. Authenticated data structures, generically. In The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 411–424. ACM, 2014.

65. E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity in outsourced databases.
ACM Trans. Storage, 2(2):107–138, 2006.

66. L. Nguyen. Accumulators from bilinear pairings and applications. In Topics in Cryptology - CT-RSA
2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14-18, 2005, Proceedings, pages 275–292. Springer, 2005.

67. U. T. O. of Financial Research. Developing best practices for regulatory data collections, 2016.
68. B. of International Settlements. The oracle problem and the future of defi, 2023.
69. R. Ostrovsky, C. Rackoff, and A. D. Smith. Efficient consistency proofs for generalized queries

on a committed database. In Automata, Languages and Programming: 31st International Collo-
quium, ICALP 2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes
in Computer Science, pages 1041–1053. Springer, 2004.

70. C. Papamanthou, E. Shi, and R. Tamassia. Signatures of correct computation. In Theory of
Cryptography Conference, pages 222–242. Springer, 2013.

71. C. Papamanthou, R. Tamassia, and N. Triandopoulos. Optimal verification of operations on dynamic
sets. In Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2011, 2011.

72. G. Ramezan, E. R. Casas, B. Beath, and J. Godfrey. zk-database: Privacy-enabled databases us-
ing zero-knowledge proof. In Proceedings of the 2024 7th International Conference on Blockchain
Technology and Applications, ICBTA 2024, Xi’an, China, December 6-8, 2024. ACM, 2024.

73. M. Z. Sam Ragsdale and J. Thaler. Understanding lasso and jolt, from theory to code.
https://a16zcrypto.com/posts/article/building-on-lasso-and-jolt/.

44

74. Y. Shin, A. Meneely, L. Williams, and J. A. Osborne. Evaluating complexity, code churn, and
developer activity metrics as indicators of software vulnerabilities. IEEE transactions on software
engineering, 37(6):772–787, 2010.

75. D. Sohn, X. Li, and J. Rogers. Everything you always wanted to know about secure and private
database systems (but were afraid to ask). IEEE Data Eng. Bull., 47(2), 2024.

76. T. Solberg. A brief history of lookup arguments. https://github.com/ingonyama-
zk/papers/blob/main/lookups.pdf, 2023.

77. Space and Time. Proof-of-sql co-processor, 2025. https://github.com/spaceandtimefdn/sxt-proof-
of-sql.

78. R. Tamassia. Authenticated data structures. In Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, 1997.

79. A. Tomescu, I. Abraham, V. Buterin, J. Drake, D. Feist, and D. Khovratovich. Aggregatable
subvector commitments for stateless cryptocurrencies. In International Conference on Security and
Cryptography for Networks, pages 45–64. Springer, 2020.

80. H. Wee and D. J. Wu. Succinct vector, polynomial, and functional commitments from lattices. In
C. Hazay and M. Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France,
April 23-27, 2023, Proceedings, Part III, volume 14006 of Lecture Notes in Computer Science, pages
385–416. Springer, 2023.

81. H. Wee and D. J. Wu. Succinct functional commitments for circuits from k-Lin. In Advances
in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part
II, volume 14652 of Lecture Notes in Computer Science, pages 280–310. Springer, 2024.

82. A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and M. Simkin. Caulk: Lookup
arguments in sublinear time. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3121–3134, 2022.

83. Zcash. The halo2 book. https://github.com/zcash/halo2.

84. Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vSQL: Verifying arbitrary
SQL queries over dynamic outsourced databases. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017.

85. Y. Zhang, J. Katz, and C. Papamanthou. IntegriDB: Verifiable SQL for outsourced databases. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, 2015.

86. Y. Zhang, J. Katz, and C. Papamanthou. An expressive (zero-knowledge) set accumulator. In 2017
IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France, April 26-28,
2017, 2017.

A Concrete Efficiency Comparison to IntegriDB and vSQL

Below we discuss how our scheme concretely compares to IntegriDB and vSQL (the state of
the art of VDBs based on non-recursive SNARKs). We also present a comparison summary
(including asymptotics) in Table 5.
Concrete efficiency comparison to the state of the art on ADS-based VDB (IntegriDB):30

– Verification time: our experiments show a consistently efficient verifier for qedb: for aggre-
gation queries such as SUM or MIN (independently of the database size) it runs in the order
of milliseconds on our evaluation machine. When verifying results of the order of hundreds
of thousands of rows, it runs in the order of the tenth of a second. Like our instantiation,
IntegriDB’s verifier also requires pairings. The number of pairings in IntegriDB, however,
is logarithmic in the table size (in our case it is completely independent from it). We were
able to replicate the benchmarks presented in Table 4 in [85] and conclude that, for the
same query and on the same machine, IntegriDB’s verifier is generally at least an order of
magnitude slower than qedb’s31.

30 Note: some of the experimental results mentioned in this section refer to additional experiments to
those reported in Section 5.

31 The synthetic data used for this comparison were generated following the same approach as Inte-
griDB [49], with tables populated randomly.

45

– Proof size: Our proof sizes shows an order of magnitude improvement compared to running
IntegriDB on the same queries. On common queries with simple equality checks our proof
size is around 0.5–1 KB independently of the number of rows in the table; IntegriDB’s proof
sizes, on the other hand, grow with the number of rows and are of approximately of size 5KB
for this type of queries even for the case of small tables32. Other types of queries show a
substantially worse proof size than IntegriDB’s. Queries with range checks occasionally show
a proof size in IntegriDB close to the ballpark of those in qedb.

– Preprocessing and proving time: The asymptotic improvements for preprocessing times in
qedb vs IntegriDB are confirmed by experiments, requiring roughly two orders of magnitude
less time in qedb even on small tables (and become more prominent with larger tables).
An end-to-end experimental comparison of proving times is non-trivial (see discussion in
Remark 7), but simple experiments confirm that qedb performs competitively or better than
IntegriDB for different queries/table sizes and without paying the price in proof size or
verification time. For medium-sized tables (≥ 100K rows), IntegriDB’s prover was unable to
run on our machine due to the memory overhead involved.

Concrete comparison for qedb vs vSQL: Above we compared against IntegriDB, the state of the
art for VDBs based on authenticated data structures. While our main point of advantage against
general-purpose proof systems is due to simplicity and modularity (at the price of generality),
here we now discuss differences in performance between our system and vSQL [84], arguably
the most prominent and best documented SNARK-like system tailored to database queries in
literature with succinct proofs. We could not perform end-to-end comparisons against vSQL (see
Remark 7), but we can nonetheless provide evidence of concrete improvements (on top of the
asymptotic ones described in Table 5). Depending on the metric and the query, qedb’s verifier
and proof size show substantial improvements. For example, vSQL’s verifier involves a number
of pairings that grows with the logarithm of the proved circuit (which is at least as large as
the database DB); in contrast, the number of pairings in qedb are independent of the size of
DB. From the values reported in [84] we conclude that the proof size in vSQL is comparable to
IntegriDB’s and therefore substantially larger than ours. Comparing the proving time in qedb
and vSQL is substantially harder due to the lack of a public implementation of the latter and
the difference in expressivity between the two systems; however, on the queries supported by us,
it is plausible that vSQL’s prover would perform substantially worse: its running time grows at
least linearly with the size of the circuit performing the query rather than the table size itself
(see also discussion in the related work section and in Section 4)33.

Remark 7 (On replicating results from prior works). While it was our initial intention to provide
an apple-to-apple comparison, we encountered a few challenges in the process, in particular in the
case of the prominent works of IntegriDB and vSQL. Specifically, vSQL’s code is not publicly
available, and IntegriDB’s code is incomplete—e.g., it lacks the TPC-H benchmarks—and is
fragile (crashing with even minor modifications due to seemingly subtle bugs). An end-to-end
comparison on complex benchmarks against these systems was not easy without reimplementing
them from scratch. We thought this would be out of the scope of this paper given the already
stated benefits of our approach in terms of modeling, simplicity, asymptotic behavior. At the
same time, we strived to still provide strong evidence that qedb does have concrete improvements
in practice; see Section 5.

32 More details on our experimental findings for IntegriDB obtained running the code provided in their
official repository: SELECT queries filtered by value equality on tables with approximately 1000 rows
IntegriDB gives a proof of 5KB (it is not a fixed number because it is sensitive to the distribution of
the values in the database); for aggregate SUM queries on tables of the same size it provides proofs
of roughly 10KB.

33 We leave as future work to extend this section with additional comparison between qedb and an-
other fairly well documented VDB from general-purpose (recursive) SNARKs, the recent work in
PoneglyphDB [44]. The reader can find a preliminary comparison in the related work section.

46

Table 5: Comparison of expressive and succinct verifiable databases constructions. We compare qual-
itative features in the top tables and efficiency metrics in the bottom table. In the table, we focus on
state of the art works based on authenticated data structures and non-recursive SNARKs. See related
work section for additional comparison and Section 4 for further discussion.

Scheme Setup Core Building
Blocks

Decouples
Logic &

Instantiations?

“Circuit-less” Expressivity

IntegriDB

[85]
powers of τ Merkle trees,

pairing-based
accumulators

✗ ✓ Fig. 1
(top part only)

vSQL

[84]
PST [70] multivar. poly

commitments,
GKR [43]

✗ ✗ anything
expressible as an
arithmetic circuit

This work powers of τ KZG ✓ ✓ Fig. 1 (all)

Scheme Overhead in |π|, Vtime

(queries w/o JOINs)
Overhead in |π|, Vtime

(JOINs)
Preprocessing &
server storage

IntegriDB [85] log(|column|) |resp| · log |column| |db|+ n2
cols

vSQL [84] polylog|db| polylog|db| |db|

This work |qry| |resp| |db|
(NB: commonly |resp| ≪ |column| ≪ |db|; for aggregate queries, |qry| ≈ |resp|, else |qry| ≪ |resp|).

Other notes: All schemes have a digest of constant size. The overhead for proof size and verification time below is an
additive overhead in addition to the query qry and the response resp. For simplicity below we assume JOINs of two tables
only. All quantities are implicitly asymptotic. ncols denotes the maximum number of columns in a table.

47

